Page 264 - Introduction to chemical reaction engineering and kinetics
P. 264

9.2 Gas-Liquid Systems 245

                            These six governing equations may be solved for  NA  with elimination of pAI,   CAi,  Nn,  kBe
                            and S,/S  to result in the rate law, in terms of (-  TA) = NA,


                                                                      DEeHA
                                                                 PA+-C B
                                                                       DA@                    (9.2-22)
                                                   NA   =  (-rA)  =



                            or


                                                   (--A)  =  KAY


                                                                                              (9.2-22b)
                                                         =  KAe
                            The last two forms come from the definitions of KAg and KAe in equations 9.2-13 and
                            -14, respectively.
                              Two extreme cases of equation 9.2-22 or -22a or -22b arise, corresponding to gas-
                            film control and liquid-film control, similar to those for mass transfer without chemical
                            reaction (Section 9.2.2). The former has implications for the location of the reaction
                            plane (at distance  6  from the interface in Figure 9.6) and the corresponding value of  cn.
                            These points are developed further in the following two examples.






                            What is the form of equation 9.2-22 for gas-film control, and what are the implications
                            for the  location  Of  the reaction plane (Vahe   Of 6) and  cs  (and hence for  (-t-A)  in  eCptiOn
                            9.2-22)?


       SOLUTION

                            In Figure 9.6, the position of the reaction plane at distance  6  from the gas-liquid interface
                            is shown for a particular value of  es. If  cn  changes (as a parameter), the  position   of the
                            reaction plane changes,  6  decreasing as  cn  increases. This may be realized intuitively from
                            Figure 9.6, or can be shown from equations 9.2-20,  -2Oa,  and -22a. Elimination of  NA  and
                            Nn  from these three equations provides a relation between  6  and  cB:





                            from which
                                                as            D~eDB&P.t
                                               dCg=-                            <o                 (B)
                                                        KA,(DAebPA  +  DB~*ACBP
                            That is,  6  decreases as  c,  increases.  6  can only decrease to zero, since the reaction plane
                            cannot occur in the gas film (species B is nonvolatile). At this condition, the reaction plane
                            coincides with the gas-liquid interface, and  PAi,  cAi, and  cs  (at the interface) are all zero.
                            This corresponds to gas-film control, since species A does not penetrate the liquid film.
   259   260   261   262   263   264   265   266   267   268   269