Page 321 - Materials Chemistry, Second Edition
P. 321

320                         15. Barriers identification and prioritization

                   Substep 3: Determining the fuzzy optimum weights.
                   The fuzzy optimum weights (relative influences) of the four influential factors including
                 T 1 ,EC 2 ,SM 1 , and SM 2 on T 2 are determined by solving the following programming (15.22).
                                      minξ ∗
                                      s:t:
                                         T 2 ,L        T 2 ,M        T 2 ,U
                                        ω            ω            ω
                                         T 1  3   ∗     T 1     ∗    T 1        ξ ∗
                                                                       5
                                         T 2 ,U        ξ ,   T 2 ,M   2    ξ    T 2 ,L
                                      ω             ω            ω
                                             2                         2
                                        EC 3         EC 3         EC 3
                                         T 2 ,L        T 2 ,M        T 2 ,U
                                        ω            ω            ω
                                                                       9
                                         T 1  7   ∗     T 1     ∗    T 1        ξ ∗
                                         T 2 ,U        ξ ,   T 2 ,M   4    ξ    T 2 ,L
                                        ω    2       ω            ω    2
                                        SM 1         SM 1         SM 1
                                         T 2 ,L        T 2 ,M        T 2 ,U
                                        ω            ω            ω
                                                                       7
                                         T 1  5   ∗     T 1     ∗    T 1        ξ ∗
                                         T 2 ,U        ξ ,   T 2 ,M   3    ξ    T 2 ,L
                                        ω    2       ω            ω    2
                                        SM 2         SM 2         SM 2
                                         T 2 ,L        T 2 ,M        T 2 ,U                 (15.22)
                                        ω            ω             ω
                                         EC 3  5   ∗     EC 3     ∗     EC 3        ξ ∗
                                                                        7
                                         T 2 ,U        ξ ,   T 2 ,M   3    ξ ,   T 2 ,L
                                      ω             ω             ω
                                             2                          2
                                        SM 1         SM 1          SM 1
                                         T 2 ,L        T 2 ,M        T 2 ,U
                                        ω            ω             ω
                                                                        5
                                         SM 2  3   ∗     SM 2     ∗     SM 2        ξ ∗
                                         T 2 ,U        ξ ,   T 2 ,M   2    ξ ,   T 2 ,L
                                      ω             ω             ω
                                             2                          2
                                        SM 1         SM 1          SM 1
                                                   ω T 2 ,L  +4ω T 2 ,M  + ω T 2 ,U
                                           X
                                                    k      k      k  ¼ 1
                                                           6
                                      k¼T 1,EC 3,SM 1,SM 2
                                      ω T 2 ,L    ω T 2 ,M    ω T 2 ,U
                                       k     k      k    k ¼ T 1 ,EC 3 ,SM 1 ,SM 2
                                      ω T 2 ,L    0 k ¼ T 1 ,EC 3 ,SM 1 ,SM 2
                                       k
                                                                            ∗
                   The results are presented in Table 15.5. The optimum value of ξ is 0.4074.
                   Substep 4: Defuzzying the fuzzy weights into crisp weights.
                   The defuzzied weights (the relative influences) of these four influential factors can be de-
                 termined as presented in Eqs. (15.23)–(15.26).
                                             0:4385 + 4 0:4385 + 0:4914
                                         T 2
                                       ω ¼                          ¼ 0:4473                (15.23)
                                         T 1            6
                              TABLE 15.5 The relative influences of T 1 ,EC 2 ,SM 1 , and SM 2 on T 2 .
                                                 T 2 , L         T 2 , M         T 2 , U
                                                ω k             ω k             ω k
                              k¼T 1             0.4385          0.4385          0.4914
                              k¼EC 3            0.2348          0.2753          0.3101
                              k¼SM 1            0.1001          0.1053          0.1122
                              k¼SM 2            0.1511          0.1689          0.2096
   316   317   318   319   320   321   322   323   324   325   326