Page 88 - Lignocellulosic Biomass to Liquid Biofuels
P. 88
Pretreatment of lignocellulosic biomass for efficient enzymatic saccharification of cellulose 63
[138] R. Wikandari, R. Millati, M.J. Taherzadeh, Chapter 12—Pretreatment of lignocel-
luloses with solvent N-methylmorpholine N-oxide, in: Solange I. Mussatto (Ed.),
Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based
Biorefinery, Elsevier, Amsterdam, 2016, pp. 255 280.
[139] A. Jeihanipour, K. Karimi, M.J. Taherzadeh, Enhancement of ethanol and biogas
production from high-crystalline cellulose by different modes of NMO pretreat-
ment, Biotechnol. Bioeng. 105 (2010) 469 476.
[140] A. Goshadrou, K. Karimi, M.J. Taherzadeh, Ethanol and biogas production from
birch by NMMO pretreatment, Biomass Bioenergy 49 (2013) 95 101.
[141] M. Gao, S. Chen, J. Han, D. Luo, L. Zhao, Q. Zheng, Effects of a pretreatment
with N-methylmorpholine-N-oxide on the structures and properties of ramie,
J. Appl. Polym. Sci. 117 (2010) 2241 2250.
[142] M.E. Hall, A.R. Horrocks, H. Seddon, The flammability of Lyocell, Polym.
Degrad. Stab. 64 (1999) 505 510.
[143] M. Shafiei, K. Karimi, M.J. Taherzadeh, Pretreatment of spruce and oak by N-
methylmorpholine-N-oxide (NMMO) for efficient conversion of their cellulose to
ethanol, Bioresour. Technol. 101 (2010) 4914 4918.
[144] N. Poornejad, K. Karimi, T. Behzad, Improvement of saccharification and ethanol
production from rice straw by NMMO and [BMIM][OAc] pretreatments, Ind.
Crop Prod. 41 (2013) 408 413.
[145] M.M. Kabir, M.D.P. Castillo, M.J. Taherzadeh, I.S. Horváth, Effect of the N-
methylmorpholine-N-oxide (NMMO) pretreatment on anaerobic digestion of for-
est residues, Bioresources 8 (2015) 5409 5423.
[146] P.R. Lennartsson, C. Niklasson, M.J. Taherzadeh, A pilot study on lignocelluloses
to ethanol and fish feed using NMMO pretreatment and cultivation with zygomy-
cetes in an air-lift reactor, Bioresour. Technol. 102 (2011) 4425 4432.
[147] T. Rosenau, A. Potthast, I. Adorjan, A. Hofinger, H. Sixta, H. Firgo, et al.,
Cellulose solutions in N-methylmorpholine-N-oxide (NMMO) degradation
processes and stabilizers, Cellulose 9 (2002) 283 291.
[148] Y.H. Jung, K.H. Kim, Acidic pretreatment, in: S. Negi, P. Binod, C. Larroche
(Eds.), Pretreatment of Biomass, Elsevier, Amsterdam, 2015, pp. 27 50.
[149] D.J. Hayes, An examination of biorefining processes, catalysts and challenges, Catal.
Today 145 (2009) 138 151.
[150] Z.-S. Liu, X.-L. Wu, K. Kida, Y.-Q. Tang, Corn stover saccharification
with concentrated sulfuric acid: effects of saccharification conditions on
sugar recovery and by-product generation, Bioresour. Technol. 119 (2012)
224 233.
[151] Y.H. Zhang, J. Cui, L.R. Lynd, L.R. Kuang, A transition from cellulose swelling
to cellulose dissolution by o-phosphoric acid: evidence from enzymatic hydrolysis
and supramolecular structure, Biomacromolecules 7 (2006) 644 648.
[152] N. Sathitsuksanoh, A. George, Y.H.P. Zhang, New lignocellulose pretreatments
using cellulose solvents: a review, J. Chem. Technol. Biotechnol. 88 (2013)
169 180.
[153] N. Sathitsuksanoh, Z. Zhu, S. Wi, Y.H.P. Zhang, Cellulose solvent-based biomass
pretreatment breaks highly ordered hydrogen bonds in cellulose fibers of switch-
grass, Biotechnol. Bioeng. 108 (2011) 521 529.
[154] J.D. McMillan, Pretreatment of lignocellulosic biomass, Enzymatic Conversion of
Biomass for Fuels Production, vol. 566, American Chemical Society, 1994,
pp. 292 324. chap. 15.
[155] G. Moxley, Z. Zhu, Y.H.P. Zhang, Efficient sugar release by the cellulose solvent-
based lignocellulose fractionation technology and enzymatic cellulose hydrolysis, J.
Agric. Food Chem. 56 (2008) 7885 7890.