Page 89 - Lignocellulosic Biomass to Liquid Biofuels
P. 89
64 Lignocellulosic Biomass to Liquid Biofuels
[156] N. Sathitsuksanoh, Z. Zhu, Y.H.P. Zhang, Cellulose solvent- and organic solvent-
based lignocellulose fractionation enabled efficient sugar release from a variety of
lignocellulosic feedstocks, Bioresour. Technol. 117 (2012) 228 233.
[157] N. Sathitsuksanoh, Z. Zhu, T.-J. Ho, M.-D. Bai, Y.-H.P. Zhang, Bamboo sacchar-
ification through cellulose solvent-based biomass pretreatment followed by enzy-
matic hydrolysis at ultra-low cellulase loadings, Bioresour. Technol. 101 (2010)
4926 4929.
[158] X. Ge, V.S. Green, N. Zhang, G. Sivakumar, J. Xu, Eastern gamagrass as an alter-
native cellulosic feedstock for bioethanol production, Process Biochem. 47 (2012)
335 339.
[159] N. Sathitsuksanoh, Z. Zhu, N. Templeton, J.A. Rollin, S.P. Harvey, Y.H. Zhang,
Saccharification of a potential bioenergy crop, Phragmites australis (Common Reed),
by lignocellulose fractionation followed by enzymatic hydrolysis at decreased cellu-
lase loadings, Ind. Eng. Chem. Res. 48 (2009) 6441 6447.
[160] Z. Zhu, N. Sathitsuksanoh, T. Vinzant, D.J. Schell, J.D. Mcmillan, Y.H.P. Zhang,
Comparative study of corn stover pretreated by dilute acid and cellulose solvent-
based lignocellulose fractionation: enzymatic hydrolysis, supramolecular structure,
and substrate accessibility, Biotechnol. Bioeng. 103 (2009) 715 724.
[161] T. Li, Q. Fang, H. Chen, F. Qi, X. Ou, X. Zhao, et al., Solvent-based delignifica-
tion and decrystallization of wheat straw for efficient enzymatic hydrolysis of cellu-
lose and ethanol production with low cellulase loadings, RSC Adv. 7 (2017)
10609 10617.
[162] J.J. Vargas Radillo, M.A. RuizLópez, R.R. Macías, L.B. Ramírez,
Fermentable sugars from Lupinus rotundiflorus biomass by concentrated hydrochloric
acid hydrolysis, Bioresources 6 (2011) 344 355.
[163] C.N. Hamelinck, Gv Hooijdonk, A.P.C. Faaij, Ethanol from lignocellulosic bio-
mass: techno-economic performance in short-, middle- and long-term, Biomass
Bioenergy 28 (2005) 384 410.
[164] A.W. Bhutto, K. Qureshi, K. Harijan, R. Abro, T. Abbas, A.A. Bazmi, Insight into
progress in pre-treatment of lignocellulosic biomass, Energy 122 (2017) 724 745.
[165] A. Pinkert, K.N. Marsh, S. Pang, M.P. Staiger, Ionic liquids and their interaction
with cellulose, Chem. Rev. 109 (2009) 6712 6728.
[166] A. Xu, J. Wang, H. Wang, Effects of anionic structure and lithium salts addition on
the dissolution of cellulose in 1-butyl-3-methylimidazolium-based ionic liquid sol-
vent systems, Green Chem. 12 (2010) 268 275.
[167] K.M. Torr, K.T. Love, B.A. Simmons, S.J. Hill, Structural features affecting the
enzymatic digestibility of pine wood pretreated with ionic liquids, Biotechnol.
Bioeng. 113 (2016) 540 549.
[168] Z. Qiu, G.M. Aita, M.S. Walker, Effect of ionic liquid pretreatment on the chemi-
cal composition, structure and enzymatic hydrolysis of energy cane bagasse,
Bioresour. Technol. 117 (2012) 251 256.
[169] L. Liu, H. Chen, Enzymatic hydrolysis of cellulose materials treated with ionic liq-
uid [BMIM] Cl, Chin. Sci. Bull. 51 (2006) 2432 2436.
[170] C. Li, B. Knierim, C. Manisseri, R. Arora, S. Singh, Comparison of dilute acid and
ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and
enzymatic saccharification, Bioresour. Technol. 101 (2010) 4900 4906.
[171] B.J. Cox, J.G. Ekerdt, Pretreatment of yellow pine in an acidic ionic liquid: extrac-
tion of hemicellulose and lignin to facilitate enzymatic digestion, Bioresour.
Technol. 134 (2013) 59 65.
[172] A.A. Elgharbawy, M.Z. Alam, M. Moniruzzaman, M. Goto, Ionic liquid pretreat-
ment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic
biomass, Biochem. Eng. J. 109 (2016) 252 267.