Page 90 - Lignocellulosic Biomass to Liquid Biofuels
P. 90
Pretreatment of lignocellulosic biomass for efficient enzymatic saccharification of cellulose 65
[173] W. Gao, L.G. Tabil, T. Dumonceaux, S. Espinel Rios, R. Zhao, Optimization of
biological pretreatment to enhance the quality of wheat straw pellets, Biomass
Bioenergy 97 (2017) 77 89.
[174] X. Yan, Z. Wang, K. Zhang, M. Si, M. Liu, L. Chai, Bacteria-enhanced dilute acid
pretreatment of lignocellulosic biomass, Bioresour. Technol. 245 (2017) 419 425.
[175] Y. Sun, J.Y. Cheng, Hydrolysis of lignocellulosic materials for ethanol production:
a review, Bioresour. Technol. 83 (2002) 1 11.
[176] M. Tutt, Using steam explosion pretreatment method for bioethanol production
from floodplain meadow hay, Agron. Res. 12 (2014) 417 424.
[177] S. Zhao, G. Li, N. Zheng, J. Wang, Z. Yu, Steam explosion enhances digestibility
and fermentation of corn stover by facilitating ruminal microbial colonization,
Bioresour. Technol. 253 (2018) 244 251.
[178] J. Lizasoain, M. Rincón, F. Theuretzbacher, R. Enguídanos, P.J. Nielsen, A.
Potthast, et al., Biogas production from reed biomass: effect of pretreatment using
different steam explosion conditions, Biomass Bioenergy 95 (2016) 84 91.
[179] T. Pielhop, J. Amgarten, P.R. von Rohr, M.H. Studer, Steam explosion pretreat-
ment of softwood: the effect of the explosive decompression on enzymatic digest-
ibility, Biotechnol. Biofuels 9 (2016) 152.
[180] A. Bauer, C. Leonhartsberger, B. Peter, B. Amon, A. Friedl, T. Amon, Analysis of
methane yields from energy crops and agricultural by-products and estimation of
energy potential from sustainable crop rotation systems in EU-27, Clean Technol.
Environ. Policy 12 (2010) 153 161.
[181] Z. Tooyserkani, L. Kumar, S. Sokhansanj, J. Saddler, X.T. Bi, C.J. Lim, SO 2 -cata-
lyzed steam pretreatment enhances the strength and stability of softwood pellets,
Bioresour. Technol. 130 (2013) 59 68.
[182] C. Tengborg, K. Stenberg, M. Galbe, G. Zacchi, S. Larsson, E. Palmqvist,
Comparison of SO 2 and H 2 SO 4 impregnation of softwood prior to steam pretreat-
ment on ethanol production, Appl. Biochem. Biotechnol. 70 72 (1998) 3 15.
[183] A.L. Ferreira Santos, K.Y. Fausta Kawase, G.L. Vieira Coelho, Enzymatic saccharifi-
cation of lignocellulosic materials after treatment with supercritical carbon dioxide,
J. Supercrit. Fluids 56 (2011) 277 282.
[184] J.Y. Zhu, X.J. Pan, G.S. Wang, R. Gleisner, Sulfite pretreatment (SPORL) for
robust enzymatic saccharification of spruce and red pine, Bioresour. Technol. 100
(2009) 2411 2418.
[185] Z.J. Wang, J.Y. Zhu, R.S. Zalesny Jr., K.F. Chen, Ethanol production from poplar
wood through enzymatic saccharification and fermentation by dilute acid and
SPORL pretreatments, Fuel 95 (2012) 606 614.
[186] C. Zhang, C.J. Houtman, J.Y. Zhu, Using low temperature to balance enzymatic
saccharification and furan formation during SPORL pretreatment of Douglas-fir,
Process Biochem. 49 (2014) 466 473.
[187] C. Zhang, R. Gleisner, C.J. Houtman, X. Pan, J.Y. Zhu, Sulfite pretreatment to
overcome the recalcitrance of lignocelluloses for bioconversion of woody biomass,
in: Solange I. Mussatto (Ed.), Biomass Fractionation Technologies for a
Lignocellulosic Feedstock Based Biorefinery, Elsevier, 2016, pp. 499 541.
[188] E. Maekawa, On an available pretreatment for the enzymatic saccharification of
lignocellulosic materials, Wood Sci. Technol. 30 (1996) 133 139.
[189] X.J. Pan, D. Xie, N. Gilkes, D.J. Gregg, J.N. Saddler, Strategies to enhance the
enzymatic hydrolysis of pretreated softwood with high residual lignin content,
Appl. Biochem. Biotechnol. 121 (2005) 1069 1079.
[190] D.G. Olson, J.E. McBride, A.J. Shaw, L.R. Lynd, Recent progress in consolidated
bioprocessing, Curr. Opin. Biotechnol. 23 (2012) 396 405.