Page 106 - MATLAB an introduction with applications
P. 106

MATLAB Basics ——— 91

                   Determine the change in the potential energy of a satellite with a mass of  500 kg that is raised from the surface
                   of the earth to a height of 800 km.
                   P1.35: Find the Laplace transform of the following function using MATLAB:
                                      3
                                    f (t) = 7t cos(5t + 60°)
                   P1.36: Use MATLAB program to find the transforms of the following functions.
                       (a)   f (t) = –7t e –5t
                       (b)  f (t) = –3 cos 5t
                       (c)  f (t) = t sin 7t
                       (d)  f (t) = 5 e –2 t  cos 5t
                       (e)  f (t) = 3 sin(5t + 45º)
                                   –3t
                       (f )  f (t) = 5 e  cos(t – 45º)
                   P1.37: Consider the two matrices
                                       1  0 2          7  8 2
                                              
                                  A =     2  5 4 and B =     3  5 9  
                                              
                                     − 18 7         − 1 3 1 
                                     
                                                       
                       Using MATLAB, determine the following:
                       (a)  A + B
                       (b)  AB
                       (c)  A 2
                       (d)  A T
                       (e)  B –1
                             T T
                       (f )  B A
                                 2
                             2
                       (g)  A  + B  – AB
                       (h)  determinant of A, determinant of B and determinant of AB.
                   P1.38: Use MATLAB to define the following matrices:
                                     21          5   3         2  3 
                                                                       
                                        
                                                                
                                A =    05 ,  B =    − 2 − 4   ,  C = − 5 − 2 ,          D = [1 2]
                                                                
                                                                       
                                        
                                      74                     0  3  
                   Compute matrices and determinants if they exist.
                               T –1
                       (a)  (AC )
                       (b)  |B|
                              T
                       (c)  |AC |
                              T
                       (d)  (C A) –1
                   P1.39: Consider the two matrices
                                       1  0 1         7  4 2
                                  A=     2  3 4    and B =    3  5 6  
                                     − 16 7        − 1 2 1 
                                     
                                                      






                   F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09
   101   102   103   104   105   106   107   108   109   110   111