Page 108 - MATLAB an introduction with applications
P. 108
MATLAB Basics ——— 93
P1.44: Determine the eigenvalues and eigenvectors of the following matrices using MATLAB.
1 − 2
(a) A =
1 3
1 5
(b) A =
− 24
P1.45: Determine the eigenvalues and eigenvectors of A B using MATLAB.
*
3 − 1 2 1 1 2 5 7
1 2 7 4 2 − 1 − 2 4
A = 7 − 1 8 6 , B = 3 2 5 1
1 − 2 3 4 4 1 − 3 6
P1.46: Determine the eigenvalues and eigenvectors of A and B using MATLAB.
4 5 − 3 1 2 3
A =− 12 3 , B = 8 9 6
2 5 7 5 3 − 1
P1.47: Determine the eigenvalues and eigenvectors of A = a b using MATLAB.
*
6 − 3 4 1
0 4 2 6
a = 1 3 8 5
2 2 1 4
0 1 2 3
4 5 6 − 1
b = 1 5 4 2
2 − 3 6 7
P1.48: Determine the values of x, y and z for the following set of linear algebraic equations:
x – 3x =–7
2 3
2x + 3x – x =9
1 2 3
4x + 5x – 2x =15
1 2 3
P1.49: Determine the values of x, y and z for the following set of linear algebraic equations:
2x – y =10
–x + 2y – z =0
–y + z = –50
P1.50: Solve the following set of equations using MATLAB.
(a) 2x + x + x – x =12
3
4
2
1
x + 5x – 5x + 6x =35
1
4
3
2
– 7x + 3x – 7x – 5x =7
1
4
3
2
x – 5x + 2x + 7x =21
4
2
3
1
F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09