Page 267 - MATLAB an introduction with applications
P. 267

252 ———  MATLAB: An Introduction with Applications


                      c = 1/sqrt(t^2+1);
                      s = c*t;
                      R = [c s;– s c];
                      D([p q],:) = R’*D([p q],:);
                      D(:,[p q]) = D(:,[p q])*R;
                      V(:,[p q]) = V(:,[p q])*R;
                      [m1 p] = max(abs(D-diag(diag(D))));
                      [m2 q] = max(m1);
                      p = p(q);
                      i = i+1;
                   end
                   D = diag(diag(D))
                   fprintf(‘Eigenvectors are\n’)
                   disp(V)

                   The output is as follows:
                   D =
                         9.1025    0        0        0
                         0         1.5186   0        0
                         0         0        4.5880   0
                         0         0        0        2.7910
                   The eigenvectors are
                   V =
                         0.6043    0.1788 – 0.7250  – 0.2778
                        – 0.5006   0.5421 – 0.0252  – 0.6744
                         0.4721    0.7046   0.4915   0.1976
                        – 0.4016   0.4215 – 0.4818   0.6550

                   Check with MATLAB built-in function:
                   >> A = [6 –2 1 –1;–2 4 –2 1;1 –2 4 –2;–1 1 –2 4];
                   >> [Q,D] = eig(A)
                   Q =
                        –0.1788      –0.2778        0.7250       –0.6043
                        –0.5421      –0.6744        0.0252        0.5006
                        –0.7046       0.1976      –0.4915        –0.4721
                        –0.4215       0.6550        0.4818        0.4016
                   D =
                         1.5186       0             0             0
                         0            2.7910        0             0
                         0            0             4.5880        0
                         0            0             0             9.1025
   262   263   264   265   266   267   268   269   270   271   272