Page 37 - MATLAB an introduction with applications
P. 37

22 ———  MATLAB: An Introduction with Applications


                          lamda = eig(A)
                          lamda = 0.5949
                                   3.0000
                                   8.4051
                       [V, D] = eig (A)
                              V =
                                –0.6713      0.9163    –0.3905
                                  0.6713   –0.3984      0.3905
                                –0.3144      0.0398     0.8337
                             D =
                                  0.5949     0          0
                                  0          3.0000     0
                                  0          0          8.4051
                   Example E1.3: Determine the values of x, y and z for the following set of linear algebraic equations:
                                x  – 3x  = –5
                                 2
                                     3
                                2x  + 3x  – x  = 7
                                  1
                                       2
                                          3
                                4x  + 5x  – 2x  = 10
                                           3
                                      2
                                  1
                   Solution:
                       Here
                                   0  1  −   3   5         x 
                                                                1
                                                    
                                            
                                                              
                                   
                                                  
                               A =  2  3  −1 ,  B =  7  and   X =  x 2  
                                                              
                                   
                                            
                                                    
                                                  
                                   4  5  −   2   10       x 
                                                                3
                                   
                                                  
                               AX = B
                                        –1
                                –1
                               A AX = A B
                               IX = A B
                                    –1
                                   –1
                   or          X = A B
                               >> A = [0 1 –3; 2 3 –1; 4 5 –2];
                               >> B = [–5; 7; 10]
                               >> x = inv (A)*B
                                 x =
                                     –1.0000
                                       4.0000
                                       3.0000
                            >> check = A*x
                            check =
                                     –5
                                       7
                                     10
                   %  Alternative method
                               >> x = A\B
                                 x =
                                    –1
                                      4
                                      3
                   F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09
   32   33   34   35   36   37   38   39   40   41   42