Page 375 - MATLAB an introduction with applications
P. 375
360 ——— MATLAB: An Introduction with Applications
3
2
1
Displacement(m) 0
–1
–2
–3
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time(s)
Fig. E6.9 MATLAB output
Example E6.10: Solve Example E6.5 by the Runga-Kutta method.
Solution: Here, the function defining the system g.m is given below:
function v2=g(t,x1,x2)
k=1;m=1; c=0.5;omega=1;
ks=0.5 % CUBIC STIFFNESS
F=10*cos(omega*t);
v2=(F–k*x1–c*x2–ks*x1^3)/m;
The output is given below for dt = 0.05s and T = 5s
time displacement velocity
0.000000 0.000000 0.000000
0.050000 0.012391 0.493389
0.100000 0.049095 0.972141
0.150000 0.109327 1.434195
0.200000 0.192202 1.877534
0.250000 0.296734 2.300105
0.300000 0.421830 2.699660
0.350000 0.566273 3.073539
0.400000 0.728700 3.418380
0.450000 0.907555 3.729795
0.500000 1.101028 4.002029
0.550000 1.306982 4.227665
0.600000 1.522864 4.397443
0.650000 1.745611 4.500284

