Page 374 - MATLAB an introduction with applications
P. 374

Direct Numerical Integration Methods ———  359

                   Example E6.9:  Solve Example E6.4 by the Runge-Kutta method.
                   Solution: Triangular pulse is defined with the following MATLAB m function
                   function v2=g(t,x1,x2)
                   k=8*pi^2;m=0.5; c=0;
                   if t<=0.2 F=(150*t/0.2);
                   else if (t>0.2 & t<=0.4) F=–(150/0.2)*(t–0.4);
                   else if t>0.4 F=0;
                   end
                   end
                   end
                   v2=(F–k*x1–c*x2)/m;

                   Here dt = 0.05s and T = 1s. The output is shown below:
                                time        displacement       velocity
                               0.000000        0.000000        0.000000
                               0.050000        0.031250        1.813315
                               0.100000        0.231900        6.553226
                               0.150000        0.706315       12.411526
                               0.200000        1.454472       17.155388
                               0.250000        2.309559       15.351753
                               0.300000        2.826498        4.081899
                               0.350000        2.627673      –12.352850
                               0.400000        1.608467      –27.686924
                               0.450000        0.008154      –34.265866
                               0.500000       –1.593966      –27.784720
                               0.550000       –2.587509      –10.723309
                               0.600000       –2.594445       10.409650
                               0.650000       –1.612934       27.559532
                               0.700000       –0.017719       34.195743
                               0.750000        1.582951       27.798535
                               0.800000        2.579242       10.815730
                               0.850000        2.592074      –10.273897
                               0.900000        1.617357      –27.432202
                               0.950000        0.027244      –34.125340
                               1.000000       –1.571956      –27.811835
   369   370   371   372   373   374   375   376   377   378   379