Page 60 - MATLAB an introduction with applications
P. 60

MATLAB Basics ——— 45

                   Residue Function: The residue function converts the polynomial transfer function
                                           n
                                         bs +  b s n− 1 + +  +
                                                    ... b s b
                                    () =
                                  Hs      0    1         n− 1  n
                                                            +
                                        as +  a s m− 1 + +  m− 1 s a m
                                           m
                                                    ... a
                                               1
                                         0
                   to the partial fraction transfer function
                                         r 1    r 2       r n
                                   () =
                                           Hs  s −  p 1  +  s −  p 2  + ... +  s −  p n  +  k ( ) s
                   [r, p, k] = residue(B, A)  Determine the vectors r, p and k, which contain the residue values, the poles and
                                         the direct terms from the partial-fraction expansion. The inputs are the polynomial
                                         coefficients B and A from the numerator and denominator of the transfer function,
                                         respectively.
                   ss2tf Function: The ss2tf function converts the continuous-time, state-space equations
                                          x′ = Ax + Bu
                                           y = Cx + Du
                   to the polynomial transfer function
                                         bs +  b s n− 1 + +  +
                                           n
                                                    ... b s b
                                   () =
                                          Hs  0 m  1  m− 1  n− 1  n
                                        as +  a s  + +  m− 1 s a m
                                                            +
                                                    ... a
                                         0
                                              1
                   The function has two output matrices:
                   [num, den] = ss2tf(A, B, C, D,iu) Computes vectors num and den containing the coefficients, in descending
                                              powers of s, of the numerator and denominator of the polynomial transfer
                                              function for the iu  input. The input arguments A, B, C and D are the
                                                             th
                                                                                              th
                                              matrices of the state-space equations corresponding to the iu  input, where
                                              iu is the number of the input for a multi-input system. In the case of a single-
                                              input system, iu is 1.
                   ss2zp Function: The ss2zp function converts the continuous-time, state-space equations
                                          x′ = Ax + Bu
                                        y = Cx + Du
                   to the zero-pole-gain transfer function
                                                  −
                                          (s −  z  )(s z  )...(s −  z  )
                                    () =
                                  Hs    k     1     2      n
                                         (s −  p 1 )(s −  p 2 )...(s −  p m )
                   The function has three output matrices:
                   [z, p, k] = ss2zp(A, B, C, D, iu) Determines the zeros (z) and poles (p) of the zero-pole-gain transfer function
                                                     th
                                              for the iu  input, along with the associated gain (k). The input matrices A,
                                                                                              th
                                              B, C and D of the state-space equations correspond to the iu  input, where
                                              iu is the number of the input for a multi-input system. In the case of a single-
                                              input system, iu is 1.
                   tf2ss Function: The ts2ss function converts the polynomial transfer function

                                           n
                                         bs +  b s n− 1 + +  +
                                                    ... b s b
                                    () =
                                  Hs      0    1         n− 1  n
                                           m
                                                            +
                                        as +  a s m− 1 + +  m− 1 s a m
                                                    ... a
                                               1
                                         0
                   F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09
   55   56   57   58   59   60   61   62   63   64   65