Page 232 - MATLAB Recipes for Earth Sciences
P. 232

228                                              9 Multivariate Statistics

                    Separated  Signals − PCA        Separated  Signals − ICA
                  4                               4
                  2                               2
                  0                               0
                s PCA1  −2                     s ICA1  −2
                 −4                              −4
                    0   1000  2000  3000  4000     0    1000  2000  3000  4000
                a                              b
                  2                               4
                                                  2
                  0
                s PCA2  −2                     s ICA2  −2
                                                  0
                 −4                              −4
                    0   1000  2000  3000  4000     0    1000  2000  3000  4000
                c                              d
                  2                               4
                s PCA3  1 0                    s ICA3  2


                 −1                               0
                 −2                              −2
                    0   1000  2000  3000  4000     0    1000  2000  3000  4000
                e                              f
            Fig. 9.6 Output of the principal component analysis (a, c, e) compared with the output of
            the independent component analysis (b, d, f). The PCA has not reliably separated the mixed
            signals, whereas the ICA found the source signals almost perfectly.





               subplot(3,2,1), plot(sPCA(:,1))
               ylabel('s_{PCA1}'), title('Separated signals - PCA')
               subplot(3,2,3), plot(sPCA(:,2)), ylabel('s_{PCA2}')
               subplot(3,2,5), plot(sPCA(:,3)), ylabel('s_{PCA3}')
            The  mixing matrix A can be found with

               A_PCA = E * sqrt (D);

            Next, we separate the signals into independent components. We will do
            this by using a FastICA algorithm which is based on a fi xed-point iteration

            scheme in order to find the maximum of the non-gaussianity of the indepen-
                              T
            dent components W x. As the nonlinearity function we use a power of three
            function as an example.
   227   228   229   230   231   232   233   234   235   236   237