Page 157 - MEMS and Microstructures in Aerospace Applications
P. 157
Osiander / MEMS and microstructures in Aerospace applications DK3181_c007 Final Proof page 146 1.9.2005 12:04pm
146 MEMS and Microstructures in Aerospace Applications
60. Yang, E.-H., Dekany, R., and Padin, S., Design and fabrication of a large vertical travel
silicon inchworm microactuator for the advanced segmented silicon space telescope,
Proceedings of SPIE 4981, 107, 2003.
61. Yang, E.-H., Wiberg, D.V., and Dekany, R.G., Design and fabrication of electrostatic
actuators with corrugated membranes for MEMS deformable mirror in space, Proceed-
ings of SPIE 4091, 83, 2000.
62. Daly, J.T. et al., Recent advances in miniaturization of infrared spectrometers, Proceed-
ings of SPIE 3953, 70, 2000.
63. Barry, R.K. et al., Near IR Fabry–Perot interferometer for wide field, low resolution
hyperspectral imaging on the next generation space telescope, Proceedings of SPIE
4013, 861, 2000.
64. Butler, M.A. et al., A MEMS-based programmable diffraction grating for optical holog-
raphy in the spectral domain, Technical Digest — International Electron Devices Meet-
ing IEDM 2001, 909, 2001.
65. Silicon Light Machines, http://www.siliconlight.com
66. Barker, N.S., Shen, H., and Gernandt, T., Development of an integrated millimeter-wave
Fourier transform spectrometer, Proceedings of SPIE 5268, 61, 2004.
67. Sarnoff Corporation, http://www.sarnoffimaging.com/technologies/uncooled_ir.asp
68. Jerominek, H. et al., Micromachined uncooled VO 2 -based IR bolometer arrays, Pro-
ceedings of SPIE 2746, 60, 1996.
69. Saint-Pe, O. et al., Study of an uncooled focal plane array for thermal observation of the
Earth, Proceedings of SPIE 3436, 593, 1998.
70. Holland, P.M. et al., Miniaturized GC/MS instrumentation for in situ measurements:
micro gas chromatography coupled with miniature quadrupole array and Paul ion trap
mass spectrometers, Proceedings of the SPIE 4878, 1, 2003.
71. Peddanenikalva, H. et al., A microfabrication strategy for cylindrical ion trap mass
spectrometer arrays, Proceedings of IEEE Sensors 1, 651, 2002.
72. Siebert, P. et al., Surface microstructure/miniature mass spectrometer: processing and
applications, Applied Physics A: Materials Science and Processing 67 (2), 155, 1998.
73. Siebert, P., Petzold, G., and Muller, J., Processing of complex microsystems: a micro
mass spectrometer, Proceedings of the SPIE 3680, 562, 1999.
74. Sillon, N. and Baptist, R., Micromachined mass spectrometer, Proceedings of 11th
International Conference on Solid State Sensors and Actuators—Transducers ‘01 1,
788, 2001.
75. Taylor, S., Gibson, J.R., and Srigengan, B., Miniature mass spectrometry: implications
for monitoring of gas discharges, Sensor Review 23 (2), 150, 2003.
76. Taylor, S., Tindall, R.F., and Syms, R.R.A., Silicon based quadrupole mass spectrometry
using microelectromechanical systems, Journal of Vacuum Science & Technology B
(Microelectronics and Nanometer Structures) 19 (2), 557, 2001.
77. Tullstall, J.J. et al., Silicon micromachined mass filter for a low power, low cost
quadrupole mass spectrometer, Proceedings IEEE Eleventh Annual International Work-
shop on Micro Electro Mechanical Systems 438, 1998.
78. Wiberg, D. et al., LIGA fabricated two-dimensional quadrupole array and scroll pump
for miniature gas chromatograph/mass spectrometer, Proceedings of SPIE 4878, 8, 2002.
79. Yoon, H.J. et al., The test of hot electron emission for the micro mass spectrometer,
Proceedings of the SPIE 4408, 360, 2001.
80. Chabot, M.D. et al., Single-crystal silicon triple-torsional micro-oscillators for use in
magnetic resonance force microscopy, Proceedings of SPIE 4559, 24, 2001.
© 2006 by Taylor & Francis Group, LLC