Page 154 - MEMS and Microstructures in Aerospace Applications
P. 154
Osiander / MEMS and microstructures in Aerospace applications DK3181_c007 Final Proof page 143 1.9.2005 12:04pm
Microtechnologies for Science Instrumentation Applications 143
specific missions. In many cases, the fast development technology and fabrication
capability allow systems and instruments to be designed and fabricated that could
not have been thought of a few years ago. This development requires strong
interaction between the space scientist and the engineer, who can use a toolbox of
new capabilities of microsystems to generate new instruments.
REFERENCES
1. Wesolek, D.M. et al., A micro-machined flat plasma spectrometer (FlaPS), Proceedings
of SPIE 5344, 89, 2004.
2. Wickenden, D.K. et al., Micromachined polysilicon resonating xylophone bar magnet-
ometer, Acta Astronautica 52 (2–6), 421, 2003.
3. Jerominek, H. et al., 128 128 pixel uncooled bolometric FPA for IR detection and
imaging, Proceedings of SPIE 3436, 585, 1998.
4. Tang, T.K., MEMS for space applications, Proceedings IEEE 25th International Silicon-
on-Insulator Conference 67, 1999.
5. George, T. et al., MEMS-based force-detected nuclear magnetic resonance spectrometer
for in situ planetary exploration, 2001 IEEE Aerospace Conference Proceedings 1, 1273,
2001.
6. Magnetospheric constellation mission, MC, NASA, http://stp.gsfc.nasa.gov/missions/
mc/mc.htm#overview
7. Geospace Missions Network, NASA, http://lws.gsfc.nasa.gov/overview2.htm
8. Young, D.T., Space plasma particle instrumentation and the new paradigm: Faster,
cheaper, better, in Measurement techniques in space plasmas, Pfaff, R.F., Borovsky,
J.E., and Young, D.T., (eds), American Geophysical Union, Washington, D.C., 1998, 1.
9. Grunthaner, F.J. et al., Micromachined silicon-based analytical microinstruments for
space science and planetary exploration, 706, 1994.
10. Enloe, C.L. et al., Miniaturized electrostatic analyzer manufactured using photolitho-
graphic etching, Review of Scientific Instruments 74 (3), 1192, 2003.
11. Ripka, P., New directions in fluxgate sensors, Journal of Magnetism and Magnetic
Materials 215, 735, 2000.
12. Korepanov, V., Electromagnetic sensors for microsatellites, Proceedings of IEEE Sen-
sors 2002 1, 1718, 2002.
13. Kawahito, S. et al., Fluxgate magnetic sensor with micro-solenoids and electroplated
permalloy cores, Sensors and Actuators A: Physical 43 (1–3), 128, 1994.
14. Liakopoulos, T.M. and Ahn, C.H., Micro-fluxgate magnetic sensor using micromachined
planar solenoid coils, Sensors and Actuators A: Physical 77 (1), 66, 1999.
15. Kawahito, S. et al., Micromachined solenoids for highly sensitive magnetic sensors,
1077, 1991.
16. Gottfried-Gottfried, R. et al., Miniaturized magnetic field sensor system consisting of a
planar fluxgate sensor and a CMOS readout circuitry, Proceedings of the International
Conference on Solid-State Sensors and Actuators 2, 229, 1995.
17. Gottfried-Gottfried, R. et al., A miniaturized magnetic-field sensor system consisting of a
planar fluxgate sensor and a CMOS readout circuitry, Sensors and Actuators A: Physical
54 (1–3), 443, 1996.
18. Lenz, J.E. et al., A high-sensitivity magnetoresistive sensor, 114, 1990.
© 2006 by Taylor & Francis Group, LLC