Page 77 - MEMS and Microstructures in Aerospace Applications
P. 77
Osiander / MEMS and microstructures in Aerospace applications DK3181_c003 Final Proof page 65 1.9.2005 9:00pm
MEMS Fabrication 65
32. Chau, K.H. and Sulouff, R.E., Technology for the high-volume manufacturing of inte-
grated surface-micromachined accelerometer products, Microelectronics Journal, 29,
579–586, 1998.
33. Van Kessel, P.F., et al., A MEMS-based projection display, Proceedings of the IEEE,
86(8), August 1998.
34. Howe, R., Polysilicon integrated microsystems: technologies and applications, Proceed-
ings of Transducers 95, 43–46, 1995.
35. Sullivan, J.P., et al., Developing a new material for MEMS: amorphous diamond, 2000
Fall MRS Meeting, November 27–December 1, 2000, Boston.
36. Yun, W., Howe, R., and Gray, P., Surface micromachined, digitally force balanced
accelerometer with integrated CMOS detection circuitry, Proceedings of IEEE Solid-
State Sensor and Actuator Workshop ’92, p. 126, 1992.
37. Mehregany, M. and Zorman, C.A., SiC MEMS: opportunities and challenges for appli-
cations in harsh environments, Thin Solid Films, 355–356, 518–524, 1999.
38. Harris, G.L., Properties of Silicon Carbide, 1995.
39. Mehregany, M., et al., Silicon Carbide MEMS for Harsh Environments, Proceedings of
the IEEE, 86(8), August 1998.
40. Fisher, G.R. and Barnes, P., Philosophical Magazine, B.61, 111, 1990.
41. Yasseen, A.A., Zorman, C.A., and Mehregany, M., Surface micromachining of poly-
crystalline sic films using microfabricated molds of SiO 2 and polysilicon. Journal of
Microelectromechanical Systems, 8(3), 237–242, September 1999.
42. Rajan, N., et al., Fabrication and testing of micromachined silicon carbide and nickel fuel
atomizers for gas turbine engines, Journal of Microelectromechanical Systems, 8(3),
251–257, September 1999.
43. Sedky, S., et al., Structural and mechanical properties of polycrystalline silicon germa-
nium for micromachining applications, Journal of Microelectromechanical Systems,
7(4), pp. 365–372, December 1998.
44. Franke, A.E., Heck, J.M., and King, T.J., Polycrystalline silicon–germanium films for
integrated microsystems, Journal of Microelectromechanical Systems, 12(2), 160–171,
April 2003.
45. Sullivan, J.P., et al., Developing a new material for MEMS: amorphous diamond,
Materials Research Society Symposium Proceedings, 657, 2001.
46. Bjorkman, H., et al., Diamond replicas from microstructured silicon masters, Sensors
and Actuators, 73, 24–29, 1999.
47. Ramesham, R., Fabrication of diamond microstructures from micro electro mechanical
systems (MEMS) by a surface micromachining process, Thin Solid Films, 340, 1–6,
1999.
48. Bjorkman, H., et al., Diamond microstructures for optical microelectromechanical sys-
tems, Sensors and Actuators, 78, 41–47, 1999.
49. Shibata, T., et al., Micromachining of diamond film for MEMS applications, Journal of
Microelectromechanical Systems, 9(1), 47–51, March 2000.
50. Friedmann, T.A., et al., Thick stress-free amorphous-tetrahedral carbon films with
hardness near that of diamond, Applied Physical Letters, 71, p. 3820, 1997.
51. Friedmann, T.A. and Sullivan, J.P., Method of Forming a Stress Relieved Amorphous
Tetrahedrally-Coordinated Carbon Film, U.S. Patent no. 6,103,305, issued Aug. 15, 2000.
52. Conradie, E.H. and Moore, D.F., SU-8 thick photoresist processing as a functional
material for MEMS applications, Journal of Micromechanical Microengineering, 12,
pp. 368–374, 2002.
© 2006 by Taylor & Francis Group, LLC