Page 8 -
P. 8
Editor-in-Chief
Mohamed Gad-el-Hak received his B.Sc. (summa cum laude) in mechani-
cal engineering from Ain Shams University in 1966 and his Ph.D. in fluid
mechanics from the Johns Hopkins University in 1973, where he worked with
Professor Stanley Corrsin. Gad-el-Hak has since taught and conducted research
at the University of Southern California, University of Virginia, University of
Notre Dame, Institut National Polytechnique de Grenoble, Université de Poitiers,
Friedrich-Alexander-Universität Erlangen-Nürnberg, Technische Universität
München, and Technische Universität Berlin, and has lectured extensively at sem-
inars in the United States and overseas. Dr. Gad-el-Hak is currently the Inez
Caudill Eminent Professor of Biomedical Engineering and chair of mechanical
engineering at Virginia Commonwealth University in Richmond. Prior to his
Notre Dame appointment as professor of aerospace and mechanical engineering, Gad-el-Hak was senior
research scientist and program manager at Flow Research Company in Seattle, Washington, where he
managed a variety of aerodynamic and hydrodynamic research projects.
Professor Gad-el-Hak is world renowned for advancing several novel diagnostic tools for turbulent
flows, including the laser-induced fluorescence (LIF) technique for flow visualization; for discovering the
efficient mechanism via which a turbulent region rapidly grows by destabilizing a surrounding laminar
flow; for conducting the seminal experiments which detailed the fluid–compliant surface interactions in
turbulent boundary layers; for introducing the concept of targeted control to achieve drag reduction, lift
enhancement and mixing augmentation in wall-bounded flows; and for developing a novel viscous pump
suited for microelectromechanical systems (MEMS) applications. Gad-el-Hak’s work on Reynolds num-
ber effects in turbulent boundary layers, published in 1994, marked a significant paradigm shift in the
subject. His 1999 paper on the fluid mechanics of microdevices established the fledgling field on firm
physical grounds and is one of the most cited articles of the 1990s.
Gad-el-Hak holds two patents: one for a drag-reducing method for airplanes and underwater vehicles and
the other for a lift-control device for delta wings. Dr. Gad-el-Hak has published over 450 articles,
authored/edited 14 books and conference proceedings, and presented 250 invited lectures in the basic and
applied research areas of isotropic turbulence, boundary layer flows, stratified flows, fluid–structure
interactions, compliant coatings, unsteady aerodynamics, biological flows, non-Newtonian fluids, hard
and soft computing including genetic algorithms, flow control, and microelectromechanical systems.
Gad-el-Hak’s papers have been cited well over 1000 times in the technical literature. He is the author of
the book “Flow Control: Passive, Active, and Reactive Flow Management,” and editor of the books
“Frontiers in Experimental Fluid Mechanics,” “Advances in Fluid Mechanics Measurements,” “Flow Control:
Fundamentals and Practices,” “The MEMS Handbook,” and “Transition and Turbulence Control.”
Professor Gad-el-Hak is a fellow of the American Academy of Mechanics, a fellow and life member of
the American Physical Society, a fellow of the American Society of Mechanical Engineers, an associate fel-
low of the American Institute of Aeronautics and Astronautics, and a member of the European Mechanics
vii
© 2006 by Taylor & Francis Group, LLC