Page 181 - Machine Learning for Subsurface Characterization
P. 181
Robust geomechanical characterization Chapter 5 155
References
[1] Tariq Z, Elkatatny S, Mahmoud M, Abdulraheem A. A new artificial intelligence based
empirical correlation to predict sonic travel time. In: International petroleum technology
conference; Bangkok, Thailand. IPTC: International petroleum technology conference; 2016.
[2] Li H, Misra S. Prediction of subsurface NMR T2 distribution from formation-mineral
composition using variational autoencoder. In: SEG technical program expanded abstracts;
2017. p. 3350–4.
[3] Li H, Misra S. Prediction of subsurface NMR T2 distributions in a shale petroleum system using
variational autoencoder-based neural networks. IEEE Geosci Remote Sens Lett 2017;(99):1–3.
[4] Rezaee MR, Ilkhchi AK, Barabadi A. Prediction of shear wave velocity from petrophysical
data utilizing intelligent systems: an example from a sandstone reservoir of Carnarvon
Basin, Australia. J Petrol Sci Eng 2007;55(3–4):201–12.
[5] Asoodeh M, Bagheripour P. Prediction of compressional, shear, and stoneley wave velocities
from conventional well log data using a committee machine with intelligent systems. Rock
Mech Rock Eng 2012;45(1):45–63.
[6] Iverson WP, Walker JN. Shear and compressional logs derived from nuclear logs. In: SEG
technical program expanded abstracts. Society of Exploration Geophysicists; 1988. p. 111–3.
[7] Greenberg M, Castagna J. Shear-wave velocity estimation in porous rocks: theoretical
formulation, preliminary verification and applications. Geophys Prospect 1992;40(2):195–209.
[8] Maleki S, Moradzadeh A, Riabi RG, Gholami R, Sadeghzadeh F. Prediction of shear wave
velocity using empirical correlations and artificial intelligence methods. NRIAG J Astron
Geophys 2014;3(1):70–81.
[9] Keys RG, Xu S. An approximation for the Xu-White velocity model. Geophysics 2002;67(5):
1406–14.