Page 181 - Macromolecular Crystallography
P. 181

170  MACROMOLECULAR CRYS TALLOGRAPHY

        Its average value, recently jumped over 400,000 Å 3  Brunger, A. T., Adams, P. D., Clore, G. M., DeLano,
        (1500 amino acid residues for the 50% solvent con-  W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J.-S.,
        tent) may be affected by fewer giant structures  Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J.,
        such as the one for avian birnavirus (Coulibaly  Rice, L. M., Simonson, T. and Warren, G. L. (1998).
        et al., 2005) with 38 MDa content in the asymmetric  Crystallography and NMR System: A new software
                                                      suite for macromolecular structure determination. Acta
        unit. Although the unrefined model of this structure
                                                      Crystallogr. D 54, 905–921.
        consists of approximately positioned Cα atoms into
                                                     Brunzelle, J. S., Shafaee, P., Yang, X., Weigand, S., Ren, Z.
        a 7 Å density map, it does serve as an excellent
                                                      and Anderson, W. F. (2003). Automated crystallographic
        example of the potential of macromolecular crystal-  system for high-throughput protein structure determi-
        lography for challenging projects. It is important,  nation. Acta Crystallogr. D59, 1138–1144.
        that the data for these and even more complicated  Cohen, S. X., Morris, R. J., Fernandez, F. J., Jel-
        structures are obtained using state-of-the-art tech-  loul, M. B., Kakaris, M., Parthasarathy, V., Lamzin,
        nologies and that the derived models present an as  V. S.,  Kleywegt,  G. J. and Perrakis,  A. (2004).
        accurate and complete interpretation as possible.  Towards complete validated models in the next
                                                      generation of ARP/wARP. Acta Crystallogr. D 60,
                                                      2222–2229.
                                                     Coulibaly, F., Chevalier, C., Gutsche, I., Pous, J., Navaza, J.,
        References                                    Bressanelli, S., Bernard Delmas, B. and Rey, F. A.
                                                      (2005). The birnavirus crystal structure reveals struc-
        Abrahams, J.P. (1997) Bias reduction in phase refinement by  tural relationships among icosahedral viruses. Cell 120,
          modified interference functions: introducing the gamma  761–772.
          correction. Acta Crystallogr. D53, 371–376.  Cowtan, K. (1998). Modified phased translation functions
        Adams, P. D., Grosse-Kunstleve, R. W., Hung, L.-W.,  and their application to molecular-fragment location.
          Ioerger, T. R., McCoy, A. J., Moriarty, N. W., Read, R. J.,  Acta Crystallogr. D 54, 750–756.
          Sacchettini, J. C., Sauter, N. K. and Terwilliger, T. C.  Dalgaard, P. (2002). Introductory Statistics with R. Springer.
          (2002). PHENIX: building new software for automated  Dauter, Z. (2002). One-and-a-half wavelength approach.
          crystallographic structure determination. Acta Crystal-  Acta Crystallogr. D 58, 1958–1967.
          logr. D 58, 1948–1954.                     de La Fortelle, E. and Bricogne, G. (1997). Maximum-
        Badger, J. (2003). An evaluation of automated model  likelihood heavy-atom parameter refinement for mul-
          building procedures for protein crystallography. Acta  tiple isomorphous replacement and multiwavelength
          Crystallogr. D 59, 823–827.                 anomalous diffraction methods. Method Enzymol. 276,
        Bishop, C.M.(2002). NeuralNetworksforPatternRecognition.  590–620.
          Oxford University Press, New York.         Duda, R. O., Hart, P. E. and Stork, D. G. (2000). Pattern
        Blanc, E., Roversi, P., Vonrhein, C., Flensburg, C., Lea, S. M.  Classification. Wiley-Interscience.
          and Bricogne, G. (2004). Refinement of severely incom-  Engh, R. A. and Huber R. (1991). Accurate bond and angle
          plete structures with maximum likelihood in BUSTER-  parameters for X-ray protein structure refinement. Acta
          TNT. Acta Crystallogr. D 60, 2210–2221.     Crystallogr. A 47, 392–400.
        Bricogne, G. and Irwin, J. J. (1996). Proceedings of the CCP4  Fortier, S., Chiverton, A., Glasgow, J. and Leherte, L. (1997).
          Study Weekend. Macromolecular Refinement, Dodson, E.,  Critical-point analysis in protein electron-density map
          Moore, M., Ralph A. and Bailey, S., eds, pp. 85–92.  interpretation. Method Enzymol. 277, 131–157.
          Warrington: Daresbury Laboratory.          Greer, J. (1974). Three-dimensional pattern recognition: an
        Bricogne, G., Vonrhein, C., Paciorek, W., Flensburg, C.,  approach to automated interpretation of electron density
          Schiltz, M., Blanc, E., Roversi, P., Morris, R. and G.  maps of proteins. J. Mol. Biol. 82, 279–301.
          Evans, G. (2002). Enhancements in autoSHARP and  Hastie, T., Tibshirani, R. and Friedman, J. H. (2001). The
          SHARP, with applications to difficult phasing problems.  Elements of Statistical Learning. Data Mining, Inference and
          Acta Crystallogr. A 58 (Suppl.), C239.      Prediction. Springer, New York.
        Brunger, A. T. (1992). The free R-value: a novel statistical  Holton, J. and Alber, T. (2004). Automated protein crystal
          quantity for assessing the accuracy of crystal structures.  structure determination using ELVES. Proc. Natl. Acad.
          Nature 355, 472–474.                        Sci. USA 101, 1537–1542.
        Brunger, A. T. (1993). X-PLOR version 3.1 Manual. Yale  Holton, T., Ioerger, T. R., Christopher, J. A. and
          University Press, New Haven, CT, USA.       Sacchettini, J. C. (2000). Determining protein structure
   176   177   178   179   180   181   182   183   184   185   186