Page 182 - Macromolecular Crystallography
P. 182

MODEL BUILDING, REFINEMENT, AND VALIDATION  171

          fromelectron-densitymapsusingpatternmatching. Acta  Morris, R. J., Perrakis, A. and Lamzin, V. S. (2002).
          Crystallogr. D 56, 722–734.                 ARP/wARP’s model-building algorithms. I. The main
        Ioerger, T. R. and Sacchettini, J. C. (2002). Automatic mod-  chain. Acta Crystallogr. D 58, 968–975.
          eling of protein backbones in electron-density maps via  Morris, R. J., Perrakis, A. and Lamzin, V. S. (2003).
          prediction of Calpha coordinates. Acta Crystallogr. D 58,  ARP/wARP and automatic interpretation of protein
          2043–2054.                                  electron density maps. Method Enzymol. 374, 229–244.
        Ioerger, T. R. and Sacchettini, J. C. (2003). TEXTAL  Morris, R. J., Zwart, P. H., Cohen, S., Fernandez, F. J.,
          system:  artificial intelligence techniques for auto-  Kakaris, M., Kirillova, O., Vonrhein, C., Perrakis, A.
          mated protein model building. Methods Enzymol. 374,  and Lamzin, V. S. (2004). Breaking good resolutions with
          244–270.                                    ARP/wARP. J. Synchr. Rad. 11, 56–59.
        Ioerger, T. R., Holton, T., Christopher, J. A. and Sacchettini,  Murshudov, G. N., Vagin, A. A. and Dodson, E. J.
          J. C. (1999). TEXTAL: a pattern recognition system for  (1997). Refinement of macromolecular structures by the
          interpreting electron density maps. Proc. Int. Conf. Intell.  maximum-likelihood method. Acta Crystallogr. D 53,
          Syst. Mol. Biol. 130–137.                   240–255.
        Isaacs, N. W. and Agarwal, R. C. (1985). Free atom inser-  Ness, S. R., de Graaff, R. A., Abrahams, J. P. and Pannu,
          tion and refinement as a means of extending and refining  N. S. (2004). CRANK: new methods for automated
          phases. Methods Enzymol. 115, 112–117.      macromolecular crystal structure solution. Structure 12,
        Jones, T. A. and Thirup, S. (1986). Using known sub-  1753–1761.
          structuresinproteinmodelbuildingandcrystallography  Ogata, C. M. (1998). MAD phasing grows up. Nat. Struct.
          EMBO J. 5, 819–822.                         Biol. 5, 638–640.
        Jones, T. A., Zou, J.-Y., Cowan, S. W. and Kjeldgaard, M.  Panjikar, S., Parthasarathy, V., Lamzin, V. S., Weiss, M. S.
          (1991). Improved methods for building protein models  and Tucker, P. A. (2005). Auto-Rickshaw: an automated
          in electron density maps and the location of errors in  crystal structure determination platform as an efficient
          these models. Acta Crystallogr. A 47, 110–119.  tool for the validation of an X-ray diffraction experiment.
        Kleywegt, G. J. and Jones, T. A. (1997). Template convo-  Acta Crystallogr. D 61, 449–457.
          lution to enhance or detect structural features in macro-  Perrakis, A., Harkiolaki, M., Wilson, K. S. and Lamzin,
          molecular electron-density maps. Acta Crystallogr. D 53,  V. S. (2001). ARP/wARP and molecular replacement.
          179–185.                                    Acta Crystallorg. D 57, 1445–1450.
        Lamzin, V. S. and Wilson, K. S. (1993). Automated  Perrakis, A., Morris, R. and Lamzin, V. S. (1999). Auto-
          refinement of protein models. Acta Crystallogr. D 49,  mated protein model building combined with iterative
          129–147.                                    structure refinement. Nat. Struct. Biol. 6, 458–63.
        Lamzin, V. S., Perrakis, A. and Wilson, K. S. (2001).  Perrakis, A., Sixma, T. K., Wilson, K. S. and Lamzin,
          The ARP/wARP suite for automated construction and  V. S. (1997). wARP: improvement and extension of crys-
          refinement of protein models. In: International Tables  tallographic phases by weighted averaging of multiple
          for Crystallography. Volume F: Crystallography of biologi-  refined dummy atomic models. Acta Crystallogr. D 53,
          cal macromolecules, Rossmann, M. G. and Arnold, E. eds.,  448–455.
          pp. 720–722. Dordrecht, Kluwer Academic Publishers,  Pichler, A., Knipscheer, P., Oberhofer, E., van Dijk, W.J.,
          The Netherlands.                            Korner, R., Olsen, J.V., Jentsch, S., Melchior, F. and
        Lapedes, A. and Farber, R. (1988). How neural nets work.  Sixma, T.K. (2005) SUMO modification of the ubiquitin-
          In: Neural Information Processing Systems, Anderson,  conjugating enzyme E2-25K. Nat. Struct. Mol. Biol. 12,
          D. Z., ed. American Institute of Physics, New York.  264–269.
        Levitt, D. G. (2001). A new software routine that auto-  Press, W. H., Flannery, B. P., Teukolsky, S.A. and Vetterling,
          mates the fitting of protein X-ray crystallographic  W. T. (2002). Numerical Recipes in C: The Art of Sci-
          electron-density maps. Acta Crystallogr. D 57, 1013–  entific Computing. Cambridge University Press, New
          1019.                                       York, USA.
        Lippmann,  R. P.,  Kukolich,  L. C. and Singer,  E.  Ramakrishnan, C. and Ramachandran, G. N. (1965). Stere-
          (1993). LNKnet: neural network, machine learning,  ochemical criteria for polypeptide and protein chain
          and statistical software for pattern classification. Lincoln  conformations. Biophys. J. 5, 909–903.
          Laboratory J. 6, 249–268.                  Rice, L.M. and Brunger, A.T. (1994) Torsion angle
        Morris, R. J. (2004). Statistical pattern recognition for  dynamics: reduced variable conformational sampling
          macromolecular crystallographers. Acta Crystallogr. D  enhances crystallographic structure refinement. Proteins
          60, 2133–2143.                              19, 277–290.
   177   178   179   180   181   182   183   184   185   186   187