Page 133 - Marine Structural Design
P. 133

Chapter 6 mshore Structural Analysis                                   109


                  where,   d), is any values, the stifhess matrix equation for an element is
                       {de [KI, {4,                                                   (6.10)
                          =
                  where,  is a stiffhess matrix

                        [KI,  = 6 [BIT EZbb
                           =I/[  412  -61  :ill                                       (6.11)
                                ‘QI’
                                    61  -12  61
                             13  -12  -61  12
                                61  212  -61  412

                  6.3.3  Stiffness Matrix for 3D Beam Elements


















                             Figure 6.3   Inclined 2D Beam Element


                  In Figure 6.3, x.7 denote local member axes and X,JJ denote global system axes. The moments
                  M, and M, can be considered as vectors normal to the x - y plane, corresponding to angles e,
                  and B2. Hence, the transformation equations relating nodal force components in local axes and
                  global axes may be written as,

                                                                                      (6.12)




                           -
                           FL’          61’
                           -
                           4Y -         FIY
                           M,           MI
                                           ’
                       {TI= F,,  ’7   dr) =  F2x
                           -
                           F2Y -        F2Y
                          .M2,          .M2,
                  and the transformation matrix [TI is given from geometrical consideration as,
   128   129   130   131   132   133   134   135   136   137   138