Page 71 - Materials Science and Engineering An Introduction
P. 71
2.8 Mixed Bonding • 43
2.8 MIXED BONDING
Sometimes it is illustrative to represent the four bonding types—ionic, covalent, metal-
lic, and van der Waals—on what is called a bonding tetrahedron—a three-dimensional
tetrahedron with one of these “extreme” types located at each vertex, as shown in
Figure 2.25a. Furthermore, we should point out that for many real materials, the atomic
bonds are mixtures of two or more of these extremes (i.e., mixed bonds). Three mixed-
bond types—covalent–ionic, covalent–metallic, and metallic–ionic—are also included
on edges of this tetrahedron; we now discuss each of them.
For mixed covalent–ionic bonds, there is some ionic character to most covalent bonds
and some covalent character to ionic ones. As such, there is a continuum between these two
extreme bond types. In Figure 2.25a, this type of bond is represented between the ionic and
covalent bonding vertices. The degree of either bond type depends on the relative positions
of the constituent atoms in the periodic table (see Figure 2.8) or the difference in their elec-
tronegativities (see Figure 2.9). The wider the separation (both horizontally—relative to
Group IVA—and vertically) from the lower left to the upper right corner (i.e., the greater
the difference in electronegativity), the more ionic is the bond. Conversely, the closer the
atoms are together (i.e., the smaller the difference in electronegativity), the greater is the
degree of covalency. Percent ionic character (%IC) of a bond between elements A and B
(A being the most electronegative) may be approximated by the expression
%IC = 51 - exp[ -(0.25)(X A - X B ) ]6 * 100 (2.16)
2
where X A and X B are the electronegativities for the respective elements.
Another type of mixed bond is found for some elements in Groups IIIA, IVA, and
VA of the periodic table (viz., B, Si, Ge, As, Sb, Te, Po, and At). Interatomic bonds for
these elements are mixtures of metallic and covalent, as noted on Figure 2.25a. These
materials are called the metalloids or semi-metals, and their properties are intermedi-
ate between the metals and nonmetals. In addition, for Group IV elements, there is a
gradual transition from covalent to metallic bonding as one moves vertically down this
column—for example, bonding in carbon (diamond) is purely covalent, whereas for tin
and lead, bonding is predominantly metallic.
Covalent
Bonding Polymers
(Covalent)
Semiconductors
Covalent– Ceramics
Metallic Semi-metals
(Metalloids)
Covalent–
Ionic
Metallic van der Waals Molecular
Metals
Bonding Bonding solids
(Metallic)
(van der Waals)
Metallic–
Ionic Intermetallics
Ionic
Bonding Ionic
(a) (b)
Figure 2.25 (a) Bonding tetrahedron: Each of the four extreme (or pure) bonding types is located at one corner
of the tetrahedron; three mixed bonding types are included along tetrahedron edges. (b) Material-type tetrahedron:
correlation of each material classification (metals, ceramics, polymers, etc.) with its type(s) of bonding.