Page 289 - Mathematical Models and Algorithms for Power System Optimization
P. 289

Optimization Method for Load Frequency Feed Forward Control 281

                          2      3   2                        32      3 2          3
                            pΔM 2       1:88624      0      0    ΔM 2      1:88625
                          6      7   6                        76      7 6          7
                                                                       + 0:208335 Δu
                            pΔN 2                                ΔN 2
                                     6
                          6      7  ¼  0:18624  0:02209 0     76      7 6          7
                          4      5   4                        54      5 4          5
                                        0:3729    2:04418  2                0:4167
                            pΔP T                                ΔP T
                                                          2     3
                                                            ΔM 2
                                                          6     7
                                                   ½
                                                Z ¼ 0, 0, 1Š ΔN 2  7
                                                          6
                                                          4     5
                                                            ΔP T
                    1. Calculate the coefficient of difference equation (T ¼1):
                                   ð
                                                                     ½
                                 Xk +1Þ ¼ ϕτðÞXkðÞ + G τðÞukðÞ, ZkðÞ ¼ 0, 0, 1ŠXkðÞ
                                   2                          3          2         3
                                     0:15164      0       0                0:84836
                            ϕτðÞ ¼  0:08257 0:97815       0   5 , G τðÞ ¼  4  0:10443  5
                                   4
                                     0:00436 0:87106 0:13534               0:00204
                    2. Normalize the difference equation:
                                                     ∗
                                          Yk +1Þ ¼ ϕ τ ðÞXk ðÞ + G ∗ τ ðÞuk ðÞ
                                           ð
                                                  T
                                          Zk ðÞ ¼ h ∗ Yk ðÞ
                                        2                 3          2         3
                                           0    1     0                0:00204
                                  ∗                            ∗
                                ϕ τðÞ ¼  4  0   0     1   5 , G τðÞ ¼  4  0:08698  5
                                         0:02  0:31:265                0:03916
                                                        T
                    3.                                h ∗ ¼ 1, 0, 0½  Š。
               (3) Solve the transfer function by the normalized equation method.
                    ϕ∗(τ) has been solved, that is, the coefficients a 1 ,…,a n of difference transfer function
                    have been obtained:

                                        a 1 ¼ 1:265, a 2 ¼ 0:3, a 3 ¼ 0:02
               and the coefficient b can, by Eq. (7.119), be determined
                             2   3   2                  32          3   2          3
                               b 1       1       0    0     0:00204       0:00204
                             4 b 2 ¼  1:265      1    0  54  0:08698  5  ¼  4  0:08956  5
                                     4
                                 5
                                        0:3     1:265 1     0:03919       0:07148
                               b 3
               Thus, finally we have
                                          0:00204Z   1  +0:08956Z  2   0:07148Z  3
                                  GZðÞ ¼
                                             1 1:265Z   1  +0:3Z  2   0:02Z  3
   284   285   286   287   288   289   290   291   292   293   294