Page 112 - Mathematical Techniques of Fractional Order Systems
P. 112

100  Mathematical Techniques of Fractional Order Systems


            Chen, S.S., Tsai, J.S.H., 1993. A new tabular form for determining root distribution of a complex
               polynomial with respect to the imaginary axis. IEEE Trans. Automat. Contr. 38 (10),
               1536 1541.
            Dorato, P., Lepschy, A.M., Viaro, U., 1994. Some comments on steady state and asymptotic
               responses. IEEE Trans. Education 37 (3), 264 268.
            Doyle, J., Francis, B., Tannenbaum, A., 1992. Feedback Control Theory. Macmillan, New York,
               USA.
            Ferrante, A., Lepschy, A.M., Viaro, U., 2000. Introduzione ai controlli automatici [Introduction
               to Automatic Control]. UTET, Torino, Italy.
            Francis, B.A., Wonham, W.M., 1976. The internal model principle of control theory. Automatica
               12 (5), 457 465.
            Frank, E., 1946. On the zeros of polynomials with complex coefficients. Bull. Amer. Math. Soc.
               52 (2), 144 157.
            Gallivan, K., Grimme, E., Van Dooren, P., 1996. A rational lanczos algorithm for model reduc-
               tion. Numer. Algor. 12 (1), 33 63.
            Glover, K., 1984. All optimal hankel norm approximations of linear multivariable systems and
               their L N  error bounds. Int. J. Control 39 (6), 1145 1193.
            Graham, A., 1981. Kronecker Products and Matrix Calculus With Applications. Ellis Horwood,
               Chichester, UK.
            Gutman, S., 1979. Root clustering of a complex matrix in an algebraic region. IEEE Trans.
               Automat. Contr. 24 (4), 647 650.
            Gutman, S., Jury, E.I., 1981. A general theory for matrix root clustering in subregions of com-
               plex plane. IEEE Trans. Automat. Contr. 26 (4), 853 863.
            Henrion, D., 1998. Reliable algorithms for polynomial matrices. Ph.D. thesis, Institute of
               Information Theory and Automation, Czech Academy of Sciences, Prague, Czech Republic.
            Hirst, H.P., Macey, W.T., 1997. Bounding the roots of polynomials. College Math. J. 28 (4),
               292 295.
            Hurwitz, A., 1895. U ¨ ber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit nega-
               tiven reellen Teilen besitzt. Math. Annalen Leipzig 46, 273 284.
            Hwang, H.H., Tripathi, P.C., 1970. Generalisation of the Routh-Hurwitz criterion and its applica-
               tions. Electr. Lett. 6 (13), 410 411.
            Ionescu, C., Zhou, Y., Tenreiro Machado, J.A., eds., 2016. Special issue: advances in fractional
               dynamics and control. J. Vibrat. Control 22(8).
            Jakubowska, A., Walczak, J., 2016. Analysis of the transient state in a series circuit of the class
               RL β C α . Circuits Systems Signal Processing 35 (6), 1831 1853.
            Jenkins, M.A., Traub, J.F., 1970. A three stage variables shift iteration for polynomial zeros
               and its relation to generalized rayleigh iteration. Numer. Math. 14 (3), 252 263.
            Jia, Y.B., 2016. Roots of polynomials. Com S 477/577 Notes, Department of Computer Science,
               Iowa State Univ., Ames, IA, USA (http://web.cs.iastate.edu/cs577/handouts/polyroots.pdf).
            Jiang, Y.L., Xiao, Z.H., 2015. Arnoldi based model reduction for fractional order linear sys-
               tems. Int. J. Systems Sci 46 (8), 1411 1420.
            Kaczorek, T., 2011. Selected Problems of Fractional Systems Theory. Springer, Berlin,
               Germany.
            Kaminski, J.Y., Shorten, R., Zeheb, E., 2015. Exact stability test and stabilization for fractional
               systems. Systems Control Lett. 85, 95 99.
            Kesarkar, A.A., Selvaganesan Narayanasamy, N., 2016. Asymptotic magnitude bode plots of
               fractional order transfer functions. IEEE/CAA J. Automatica Sinica (99), 1 8. Available
               from: https://doi.org/10.1109/JAS.2016.7510196. PP.
   107   108   109   110   111   112   113   114   115   116   117