Page 108 - Mathematical Techniques of Fractional Order Systems
P. 108

96  Mathematical Techniques of Fractional Order Systems


            transfer function of either system at the roots of the denominator of the input
            transform. To clarify this, consider two systems whose respective transfer
            functions are G 1 ðwÞ 5 B 1 ðwÞ=A 1 ðwÞ and G 2 ðwÞ 5 B 2 ðwÞ=A 2 ðwÞ. Under
            suitable co-primeness assumptions, their responses to UðwÞ 5 DðwÞ=CðwÞ can
            be decomposed as
                                  B 1 ðwÞ DðwÞ  X A 1 ðwÞ  X C 1 ðwÞ
                           Y 1 ðwÞ 5        5        1                ð3:56Þ
                                  A 1 ðwÞ CðwÞ  A 1 ðwÞ  CðwÞ
            and

                                  B 2 ðwÞ DðwÞ  X A 2  ðwÞ  X C 2  ðwÞ
                           Y 2 ðwÞ 5        5       1       :         ð3:57Þ
                                  A 2 ðwÞ CðwÞ  A 2 ðwÞ  CðwÞ
                              ðwÞ 5 X C ðwÞ (equality of the input-dependent compo-
               For X C 1  ðwÞ 5 X C 2
            nents), from (3.56) and (3.57) we get
                                         ðwÞCðwÞ 1 X C ðwÞA 1 ðwÞ;    ð3:58Þ
                           B 1 ðwÞDðwÞ 5 X A 1
                                         ðwÞCðwÞ 1 X C ðwÞA 2 ðwÞ;    ð3:59Þ
                           B 2 ðwÞDðwÞ 5 X A 2
            so that, at the roots of CðwÞ, i.e., for CðwÞ 5 0, we have
                                     B 2 ðwÞ  B 1 ðwÞ
                              G 2 ðwÞ 5    5      5 G 1 ðwÞ;          ð3:60Þ
                                     A 2 ðwÞ  A 1 ðwÞ
            which means that G 2 ðwÞ interpolates G 1 ðwÞ at the poles of UðwÞ. As is well
            known, if G 2 ðwÞ and G 1 ðwÞ are realized in a unity-feedback fashion, this
            means, in turn, that their forward paths include an internal model of the
            (common) input (Francis and Wonham, 1976).
               The previous considerations have obvious implications on the so-called
            direct or analytic synthesis of control systems (Ferrante et al., 2000) whose
            first step consists in choosing an overall, or total, or complementary sensitiv-
            ity, system transfer function TðwÞ that satisfies the specifications, the next
            step being its realization, possibly by means of a feedback structure with
            controller G c ðwÞ and plant G p ðwÞ located in the forward path so that

                                          G c ðwÞG p ðwÞ
                                  TðwÞ 5                              ð3:61Þ
                                         1 1 G c ðwÞG p ðwÞ
            and

                                           1    TðwÞ
                                 G c ðwÞ 5            :               ð3:62Þ
                                         G p ðwÞ 1 2 TðwÞ
               In the case of fractional order systems, to profit by the efficient techni-
            ques developed for integer order systems, the rational function TðwÞ will be
            obtained, via (3.3), from an original fractional order transfer function. To
            facilitate the synthesis procedure, it is convenient to choose the lcd of the
            fractional powers in this function equal to the lcd of the powers in the
   103   104   105   106   107   108   109   110   111   112   113