Page 103 - Mathematical Techniques of Fractional Order Systems
P. 103

Fractional Order System Chapter | 3  91


             GðsÞ 5
              b
                                     s 2:7  1 2s 1:8  1 s 0:9  1 2
              5                                                             :
                s 6:3  1 4:9s 5:4  1 11:05s 4:5  1 14:07s 3:6  1 10:53s 2:7  1 4:55s 1:8  1 1:05s 0:9  1 0:1
                                                                       ð3:37Þ
                By the change of variable w 5 s 1=10 , we obtain
             GðwÞ 5
                                             18
                                       27
                                                   9
                                      w 1 2w 1 w 1 2
              5
                 63
                                                              18
                                            36
                                   45
                         54
                                                                       9
                                                      27
                w 1 4:9w 1 11:05w 1 14:07w 1 10:53w 1 4:55w 1 1:05w 1 0:1
                                                                       ð3:38Þ
             whose poles are outside the instability sector. Since all powers are multiples
             of 9, in this case too, the reduction procedure can profitably be applied to an
                                                                           9
             integer order rational function of smaller degree in the variable z 5 w ,
             namely:
                                               2
                                          3
               B                         z 1 2z 1 z 1 2
               GðzÞ 5
                             6
                                              4
                                     5
                      7
                                                             2
                                                      3
                      z 1 4:9z 1 11:05z 1 14:07z 1 10:53z 1 4:55z 1 1:05z 1 0:1
                                                                       ð3:39Þ
             whose 3rd order optimal Hankel-norm approximation (Glover, 1984) turns
             out to be
                                            2
                          B          0:5592z 2 0:4066z 1 0:4178
                          G r;HN ðzÞ 5                                 ð3:40Þ
                                              2
                                    3
                                   z 1 0:5841z 1 0:1885z 1 0:0204
             and in the s-domain with z 5 s 9=10
                                    0:5592s 1:8  2 0:4066s 0:9  1 0:4178
                        G r;HN ðsÞ 5                             :     ð3:41Þ
                        b
                                 s 2:7  1 0:5841s 1:8  1 0:1885s 0:9  1 0:0204
                Let us apply now the procedure based on the retention to the asymptotic
             response to the input
                                               1
                                       UðsÞ 5    :                     ð3:42Þ
                                        b
                                              s 0:9
                To this purpose, the original forced response to input (3.42) is decom-
             posed into the sum of a system-dependent component and an input-
                                                         9
             dependent component, which in the domain of z 5 w 5 ðs 1=10 9
                                                                 Þ turn out to
             be, respectively,
                                    5
                                           4
                                                    3
                              6
                                                            2
              B           2 20z 2 98z 2 221z 2 281:4z 2 209:6z 2 89z 2 20
               Y Σ ðzÞ 5                                                  ;
                                                             2
                             6
                                     5
                                              4
                                                      3
                       7
                      z 1 4:9z 1 11:05z 1 14:07z 1 10:53z 1 4:55z 1 1:05z 1 0:1
                                                                       ð3:43Þ
                                       B       20
                                       Y U ðzÞ 5  :                    ð3:44Þ
                                               z
   98   99   100   101   102   103   104   105   106   107   108