Page 106 - Mathematical Techniques of Fractional Order Systems
P. 106

94  Mathematical Techniques of Fractional Order Systems


               By applying instead the suggested reduction method based on:
            1. the decomposition of YðwÞ 5 GðwÞUðwÞ into a system-dependent
               component
                                               X A ðwÞ
                          Y Σ ðwÞ 5                                   ð3:53Þ
                                                          14
                                   33
                                          26
                                                   19
                                 w 1 3:1w 1 2:89w 1 2:5w 1 1:2
               and an input-dependent component
                                              X C ðwÞ
                                   Y U ðwÞ 5          ;               ð3:54Þ
                                           w 1 w 1 100
                                            2
            2. the approximation of (3.53) by means of the same method used to find
               (3.52) from (3.48), and
            3. the retention of (3.54),
               the following approximating fractional order transfer function is obtained
            (after substituting s 0:1  for w)
                           68:447s 0:3  1 357:21s 0:2  1 528:5s 0:1  1 157:17
                  G r ðsÞ 5                                      :    ð3:55Þ
                  b
                         s 0:4  1 3:7838s 0:3  1 103:73s 0:2  1 279:32s 0:1  1 94:3
               Fig. 3.8 shows the responses to the input with Laplace transform (3.49)
            of: (i) the original system (3.48), (ii) the approximating model (3.52), and
            (iii) the approximating model (3.55) retaining the asymptotic response.
               The previous examples show that the suggested response decomposition
            can be applied satisfactorily in many approximation problems. On the other


                       300
                                                        Original system
                                                        Approximation (2.52)
                                                        Approximation (2.55)
                       250
                       200
                      Response  150


                       100

                        50

                         0

                          0  10  20  30  40  50  60  70  80  90  100
                                          Time [sec]
            FIGURE 3.8 Responses of: (i) the original model (3.48) (blue solid line), (ii) the approximat-
            ing model (3.52) (red dotted line), and (iii) the approximating model (3.55) retaining the asymp-
            totic component of the response (green dashed line)
   101   102   103   104   105   106   107   108   109   110   111