Page 111 - Mathematical Techniques of Fractional Order Systems
P. 111

Fractional Order System Chapter | 3  99


             result that most model-reduction techniques do not ensure even for integer
             order systems. As shown by some examples, in most cases the approximation
             of the corresponding system component is not appreciably affected by the
             requirement of steady-state retention, which only entails a usually small
             increase of the reduced model order depending on the input complexity.
                Future research directions along the same lines include: (1) the character-
             ization of the transient output component in the response to suitable inputs;
             (2) the synthesis of feedback controllers that ensure the desired asymptotic
             behavior; and (3) the extension of the decomposition procedure to systems of
             nonrational order.


             REFERENCES
             Agashe, S., 1985. A new general Routh like algorithm to determine the number of RHP roots
                of a real or complex polynomial. IEEE Trans. Automat. Contr 30 (4), 406 409.
             Ahmed, E., El Sayed, A.M.A., El Saka, H.A. A., 2006. On some Routh Hurwitz conditions
                for fractional order differential equations and their applications in Lorenz, Ro ¨ssler, Chua
                and Chen Systems. Phys. Lett. A 358 (1), 1 4.
             Akritas, A.G., Strzebo´ nski, A.W., Vigklas, P.S., 2008. Improving the performance of the contin-
                ued fractions method using new bounds of positive roots. Nonlinear Anal. Model. Control
                13 (3), 265 279.
             Anderson, B.D.O., Bose, N.K., Jury, E.I., 1974. A simple test for zeros of a complex polynomial
                in a sector. IEEE Trans. Automat. Contr. 19 (4), 437 438.
             Antsaklis, P.J., Michel, A.N., 2006. Linear Systems. Birkha ¨user, Boston, MA.
             Astolfi, A., 2010. Model reduction by moment matching for linear and nonlinear systems. IEEE
                Trans. Automat. Contr. 55 (10), 2321 2336.
             Azar, A.T., Vaidyanathan, S., Ouannas, A., 2017. Fractional Order Control and Synchronization
                of Chaotic Systems. Springer, Cham, Switzerland.
             Benidir, M., Picinbono, B., 1991. The extended Routh’s table in the complex case. IEEE Trans.
                Automat. Contr. 36 (2), 253 256.
             Billarz, H., 1944. Bemerkung zu einem Staze von Hurwitz. Zeitschrif. fu ¨r Mathematik and
                Mechanik 24, 77 82.
             Bistritz, Y., 2013. Optimal Fraction free routh tests for complex and real integer polynomials.
                IEEE Trans. Circuits Systems I: Regular Papers 60 (9), 2453 2464.
             Brunetti, M., 2014. Old and new proofs of cramer’s rule. Appl. Math. Sci. 8 (133),
                6689 6697.
             Busłowicz, M., 2008. Stability of linear continuous-time fractional order systems with delays of
                the retarded type. Bull. Polish Acad. Sci. 56 (4), 319 324.
             Caponetto, R., Dongola, G., Fortuna, L., Petra ´ˇ s, I., 2010. Fractional Order Systems   Modelling
                and Control Applications. World Scientific, New Jersey, USA.
             Special issue: theory and applications of fractional order systems 2016. In: Caponetto, R.,
                Trujillo, J.J., Tenreiro Machado, J.A. (Eds.), Math. Probl. Eng.
             Casagrande, D., Krajewski, W., Viaro, U., 2017. On the asymptotic accuracy of reduced order
                models. Int. J. Control, Automation Systems . Available from: https://doi.org/10.1007/
                s12555-015-0443-y.
             Chen, C., Davenport, J.H., May, J.P., Maza, M.M., Xia, B., Xiao, R., 2013. Triangular
                Decomposition of Semi-algebraic systems. J. Symbolic Comput. 49, 3 26.
   106   107   108   109   110   111   112   113   114   115   116