Page 169 - Mathematical Techniques of Fractional Order Systems
P. 169

Fractional Order Time-Varying-Delay Systems Chapter | 5  157


             Boukal, Y., Zasadzinski, M., Darouach, M., Radhy, N., 2017c. H N dynamic output feedback
                controller design for disturbed fractional-order system, in: 20th IFAC World Congress,
                Elsevier. pp. 10134 10139.
             Boyd, S., El Ghaoui, L., Fe ´ron, E., Balakrishnan, V., 1994. Linear Matrix Inequalities in
                Systems and Control Theory. SIAM, Philadelphia.
             Busłowicz, M., 2008. Stability of linear continuous-time fractional order systems with delays of
                the retarded type. Bull. Polish Acad. Sci. Tech. Sci. 56, 237 240.
             Chen, Y., 2006. Ubiquitous fractional order controls? in: Proc. IFAC Workshop on Fractional
                Differentiation and its Application, Porto, Portugal, pp. 481 492.
             Chyi, H., Yi-Cheng, C., 2006. A numerical algorithm for stability testing of fractional delay sys-
                tems. Automatica 42, 825 831.
             Darling, R., Newman, J., 1997. On the short behaviour of porous interaction electrodes. J.
                Electrochem. Soc. 144, 3057 3063.
             Das, S., 2008. Functional Fractional Calculus for System Identification and Controls. Springer-
                Verlag, Heidelberg.
             Deng, W., Li, C., Lu ¨, J., 2007. Stability analysis of linear fractional differential system with mul-
                tiple time delays. Nonlinear Dynam. 48, 409 416.
             Farshad, M.B., Masoud, K.G., 2009. An efficient numerical algorithm for stability testing of
                fractional-delay systems. {ISA} Transactions 48, 32 37.
             Fioravanti, A.R., Bonnet, C., O ¨ zbay, H., Niculescu, S.I., 2012. A numerical method for stability
                windows and unstable root-locus calculation for linear fractional time-delay systems.
                Automatica 48, 2824 2830.
             Freed, A., Diethelm, K., 2006. Fractional calculus in biomechanics: a 3D viscoelastic model
                using regularized fractional derivative kernels with application to the human calcaneal fat
                pad. Biomech. Model. Mechanobiol. 5, 203 215.
             Komornik, V., 2016. Generalized newton leibniz formula. Lectures on Functional Analysis and
                the Lebesgue Integral. Springer, pp. 197 209.
             Krishna, B., Reddy, K., 2008. Active and passive realization of fractance device of order 1/2.
                Active and passive electronic components 2008.
             Lanusse, P., Malti, R., Melchior, P., 2013. Crone control system design toolbox for the control
                engineering community: tutorial and case study. Phil. Trans. R. Soc. A 371.
             Lederman, C., Roquejoffre, J.M., Wolanski, N., 2002. Mathematical justification of a nonlinear
                integro-differential equation for the propagation of spherical flames. Compt. Rendus Math.
                334, 569 574.
             Lianglin, X., Yun, Z., Tao, J., 2011. Stability analysis of linear fractional order neutral system
                with multiple delays by algebraic approach. World Acad. Sci. Eng. Technol. 5, 758 761.
             Lin, T., Lee, T., 2011. Chaos synchronization of uncertain fractional-order chaotic systems with
                time delay based on adaptive fuzzy sliding mode control. Fuzzy Syst. IEEE Trans. 19,
                623 635.
             Liqiong, L., Shouming, Z., 2010. Finite-time stability analysis of fractional-order with multi-
                state time delay. Int. J. Informat. Math. Sci. 6, 237 240.
             Magin, R.L., 2006. Fractional calculus in bioengineering. Begell House Redding.
             Malti, R., Melchior, P., Lanusse, P., Oustaloup, A., 2011. Towards an object oriented crone tool-
                box for fractional differential systems, in: Proceedings of 18th IFAC World Congress, pp.
                10830 10835.
             Malti, R., Melchior, P., Lanusse, P., Oustaloup, A., 2012. Object-oriented crone toolbox for frac-
                tional differential signal processing. Signal Image Video Process. 6, 393 400.
             Matignon, D., 1994. Repre ´sentation en Variables d’E ´ tat de Mode `les de Guides d’Ondes avec
                De ´rivation Fractionnaire. Ph.D. thesis. Universite ´ de Paris XI, Orsay, France.
   164   165   166   167   168   169   170   171   172   173   174