Page 170 - Mathematical Techniques of Fractional Order Systems
P. 170

158  Mathematical Techniques of Fractional Order Systems


            Matignon, D., 1998. Generalized fractional differential and difference equations: stability proper-
               ties and modelling issues, in: Proc. Mathematical Theory of Networks and Systems
               Symposium, Padova, Italy. pp. 503 506.
            Matsuda, K., Fuji, H., 1993. H N optimized wave-absorbing control: analytical and experimental
               results. J. Guidance, Contr. Dynamics 16, 1146 1153.
            Mihailo, P.L., Aleksandar, M.S., 2009. Finite-time stability analysis of fractional order time-
               delay systems: Gronwall’s approach. Math. Computer Modelling 49, 475 481.
            Montseny, G., 1998. Diffusive representation of pseudo-differential time-operators, in: ESAIM:
               Proceedings, Fractional Differential Systems: Models, Methods and Applications, EDP
               Sciences, pp. 159 175.
            Ortigueira, M.D., Machado, J.A.T., 2003. Editorial: fractional signal processing and applications.
               Signal Process. 83, 2285 2286.
            Oustaloup, A., 1991. La Commande CRONE. Hermes, Paris.
            Oustaloup, A., 1995. La De ´rivation Non Entie `re: Synthe ´se et Applications. Hermes, Paris.
            Podlubny, I., 1999. Fractional Differential Equations. Academic, New York.
            Podlubny, I., 2002. Geometric and physical interpretation of fractional integration and fractional
               differentiation. Fract. Calculus Appl. Anal. 5, 367 386.
            Sabatier, J., Agrawal, O.P., Machado, J.A.T., 2007. Advances in Fractional Calculus: Theoretical
               Developments and Applications in Physics and Engineering. Springer, New York.
            Sabatier, J., Merveillaut, M., Malti, R., Oustaloup, A., 2010. How to impose physically coherent
               initial conditions to a fractional system? Commun Nonlinear Sci. Numer. Simulat. 10,
               1318 1326.
            Sabatier, J., Farges, C., Trigeassou, J., 2014. Fractional systems state space description: some
               wrong ideas and proposed solutions. J. Vibration Control 20, 1076 1084.
            Sheng, H., Chen, Y., Qiu, T., 2012. Fractional Processes and Fractional-Order Signal Processing
               - Techniques and Applications. Springer, Berlin.
            Si-Ammour, A., Djennoune, S., Bettayeb, M., 2009. A sliding mode control for linear fractional
               systems with input and state delays. Commun. Nonlinear Sci. Numer. Simul. 14,
               2310 2318.
            Sierociuk, D., Dzieli´ nski, A., Sarwas, G., Petras, I., Podlubny, I., Skovranek, T., 2013. Modelling
               heat transfer in heterogeneous media using fractional calculus. Philos. Trans. R. Soc., A 371.
            Tarbouriech, S., 1997. Local stabilization of continuous-time delay systems with bounded inputs,
               in: Proc. European Contr. Conf., Brussels, Belgium. pp. 3684 3689.
            Trigeassou, J., Maamri, N., Sabatier, J., Oustaloup, A., 2011. A Lyapunov approach to the stabil-
               ity of fractional differential equations. Signal Process. 91, 437 445.
            Trigeassou, J.C., Maamri, N., 2009. State space modeling of fractional differential equations and
               the initial condition problem, in: Systems, Signals and Devices, 2009. SSD ’09. 6th
               International Multi-Conference on, pp. 1 7.
            Vinagre, B., 2001. Modeling and Control of Dynamic Systems characterized by Integro-
               differential Equations of Fractional Order. Ph.D. thesis. University of Distance Education.
               Spain.
            Vinagre, B.M., Podlubny, I., Herna ´ndez, A., Feliu, V., 2000. Some Approximations of fractional
               order operators used in control theory and applications. Fract. Calculus Appl. Anal. 3,
               231 248. chapter 3.
            Yuan, L., Yang, Q., Zeng, C., 2013. Chaos detection and parameter identification in fractional-
               order chaotic systems with delay. Nonlinear Dynam. 73, 439 448.
   165   166   167   168   169   170   171   172   173   174   175