Page 221 - Mathematical Techniques of Fractional Order Systems
P. 221

210  Mathematical Techniques of Fractional Order Systems


            this integral equation can be written in the following form
                                      1  ð t   α21
                          xðtÞ 5 hðtÞ 1    ðt2sÞ  AxðsÞds; t $ 0      ð7:17Þ
                                    ΓðαÞ  0
            where
                                   1  ð t   α21           ð t
                    hðtÞ  5 φð0Þ 1      ðt2sÞ  BðsÞuðsÞds 1  fðs; x s Þds
                                  ΓðαÞ  0                  0
                             1  ð t    α21    ð s
                          1       ðt2sÞ        σðτ; x τ ÞdWðτÞ ds:
                            ΓðαÞ  0         2N

               Let us assume that the integral Eq. (7.17) has an associated resolvent
            operator fSðtÞg t $ 0  on H.

            Definition 7.11: (Pru ¨ss, 2013) A one parameter family of bounded linear
            operators fSðtÞg  on H is called a resolvent operator for (7.17) if the fol-
                         t $ 0
            lowing conditions hold
             (i) SðUÞxACð½0;NÞ; HÞ and Sð0Þx 5 x for all xAH,
             (ii) SðtÞDðAÞCDðAÞ and ASðtÞx 5 SðtÞAx, ’xADðAÞ and every t $ 0,
            (iii) for every xADðAÞ and t $ 0, SðtÞx 5 x 1  1  Ð  t  ðt2sÞ α21 ASðsÞxds:
                                                  ΓðαÞ 0

            Definition 7.12: (Pru ¨ss, 2013) A resolvent operator fSðtÞg t $ 0  for (7.17) is
                                           1
            called differentiable if SðUÞxAW 1;1 ðR ; HÞ for all xADðAÞ and there exists
                                       loc
                     1
                 1
            ϕ AL ðR Þ such that OS ðtÞxO # ϕ ðtÞOxO ½DðAފ for all xADðAÞ, where the
                                   0
              A  loc                      A
            notation ½DðAފ stands the domain of the operator A provided with the graph
            norm OxO ½DðAފ 5 OxO 1 OAxO.
            Definition 7.13: (Pru ¨ss, 2013) A resolvent operator fSðtÞg t $ 0  for (7.17) is
            called analytic if the operator function SðUÞ : ð0;NÞ-LðHÞ admits an ana-
                                  P                                      π
            lytic extension to a sector  5 fλAC:jargðλÞj , θ 0 g for some 0 , θ 0 # .
                                    0;θ 0                                2
            Definition 7.14: (Pru ¨ss, 2013) A function xACðJ; HÞ is called a mild solution
                                                Ð  t  α21
            of the integral Eq. (7.17) on J,if    ðt2sÞ  xðsÞdsADðAÞ for all
                                                 0
            tAJ; hðtÞACðJ; HÞ and
                                1  ð t
                         xðtÞ 5      ðt2sÞ α21 AxðsÞds 1 hðtÞ; ’tAJ
                               ΓðαÞ  0
            Lemma 7.5: (Herna ´ndez et al., 2013) Under the above conditions the follow-
            ing properties are valid

             (i) if xðUÞ is a mild solution of (7.17) on J, then the function
                 t-  Ð  t  Sðt 2 sÞhðsÞds is differentiable on J and
                    0
   216   217   218   219   220   221   222   223   224   225   226