Page 225 - Mathematical Techniques of Fractional Order Systems
P. 225

214  Mathematical Techniques of Fractional Order Systems


            Proof: Consider the operator Φ:C b -C b defined by
                    8
                      φðtÞ; tAð2N; 0Š
                    >          ð t
                             1
                    >
                    >
                      φð0Þ 1            BðsÞuðsÞds
                    >                α21
                    >
                    >            ðt2sÞ
                    >
                            ΓðαÞ 0
                    >
                    >
                    >
                    >
                    >       ð t        ð s               ð  t
                          1
                    >
                      1                   σðτ; x τ ÞdWðτÞ ds 1  fðs; x s Þds
                    >             α21
                    >
                    >         ðt2sÞ
                    >
                        ΓðαÞ 0         2N                 0
                    <
             ðΦxÞðtÞ 5
                                "
                    >                   1  ð s
                    >   Ð t                      α21
                      1   S ðt 2 sÞ φð0Þ 1
                    >      0                       BðτÞuðτÞdτ
                    >                       ðs2τÞ
                    >    0
                    >
                    >                 ΓðαÞ 0
                    >
                    >
                    >                                              #
                    >                              τ
                    >                  ð  s       ð
                    >                1
                    >   Ð  s                  α21
                    >  1  fðτ; x τ Þdτ 1  ðs2τÞ      σðη; x η ÞdWðηÞ dτ ds; tAJ:
                    >
                    >    0
                    :
                                    ΓðαÞ 0        2N
               Let    yðUÞ:ð2N; bŠ-H    be    the    function  defined   by

            yðtÞ 5  φðtÞ; if tAð2N; 0Š  then y 0 5 φ, we define the function z by
                   0; if tAJ

                   0; if tAð2N; 0Š
            zðtÞ 5
                   zðtÞ; if tAJ:
               If xðtÞ satisfies
                           1  ð t
              xðtÞ 5 φð0Þ 1     ðt2sÞ α21 BðsÞuðsÞds
                          ΓðαÞ
                               0
                       1  ð t        ð s                  ð t
                   1        ðt2sÞ α21    σðτ; x τ ÞdWðτÞ ds 1  fðs; x s Þds
                      ΓðαÞ  0         2N                   0
                              "           ð s                  ð s
                      Ð  t             1         α21
                   1    S ðt 2 sÞ φð0Þ 1    ðs2τÞ  BðτÞuðτÞdτ 1  fðτ; x τ Þdτ
                         0
                      0
                                     ΓðαÞ  0                    0
                       1  ð s    α21    ð τ             #
                   1        ðs2τÞ        σðη; x η ÞdWðηÞ dτ ds;
                      ΓðαÞ  0         2N
            one can decompose it as xðtÞ 5 zðtÞ 1 yðtÞ; tAJ which implies x t 5 z t 1 y t ,
            tAJ and the function zðUÞ satisfies z 0 5 0 and
                        1  ð t
            zðtÞ5φð0Þ1       ðt2sÞ α21 BðsÞuðsÞds
                       ΓðαÞ  0
                    1  ð t   α21    ð s                   ð t
                 1       ðt2sÞ       σðτ;z τ 1y τ ÞdWðτÞ ds1  fðs;z s 1y s Þds
                   ΓðαÞ  0        2N                       0
                           "          ð s
                   Ð  t            1         α21
                 1   S ðt2sÞ φð0Þ1      ðs2τÞ  BðτÞuðτÞdτ
                      0
                    0
                                  ΓðαÞ  0
                                    1  ð s        ð τ                   #
                    s
                   Ð
                 1   fðτ;z τ 1y τ Þdτ 1  ðs2τÞ α21   σðη;z η 1y η ÞdWðηÞ dτ ds:
                    0
                                   ΓðαÞ  0         2N
   220   221   222   223   224   225   226   227   228   229   230