Page 229 - Mathematical Techniques of Fractional Order Systems
P. 229

218  Mathematical Techniques of Fractional Order Systems


            is bounded, since

                        1
                           ð t2E               ð t2E
                E φð0Þ 1      ð t2E2sÞ α21 BðsÞuðsÞds 1  fðs; z s 1 y s Þds

                       ΓðαÞ 0
                                                0

                           t2E          ð s
                           ð
                        1
                     1        ð t2E2sÞ α21  σðτ; z τ 1 y τ ÞdWðτÞ ds
                       ΓðαÞ 0           2N
                                                       2


                              2     1  Ð t2E  α21

                                  ΓðαÞ 0
                     # 4E φð0Þ 1 4E     ð t2E2sÞ  BðsÞuðsÞds

                      1 4E   Ð    t2E  fðs; z s 1y s Þds   2

                           0
                                                            2


                             1  Ð t2E  α21  Ð    s
                           ΓðαÞ 0  ð t2E2sÞ  2N  σðτ; z τ 1y τ ÞdWðτÞ ds
                      1 4E

                                    2                   1             3 2
                                     0          ðα21Þp  1 12          1
                                   2   ð t2E     p21    p   ð  t2E
                             2
                                                                  p



                     # 4E φð0Þ 1  4OBO 6 @  ð t2E2sÞ  ds A   E uðsÞ ds  p7



                                                                      7
                                    6

                                 2
                                Γ ðαÞ  4  0                0          5
                              t2E           2
                              Ð
                                   ð
                      1 4ðt 2 EÞ  E fs; z s 1y s Þ ds


                             α  0 ð  t2E             ð s
                         ð
                        4 t2EÞ         α21                        2
                      1    2     ð t2E2sÞ  2M R 1 2Tr QðÞ  E:σðτ; z τ 1y τ Þ: 0 dτ ds
                                                                  L
                         αΓ ðαÞ  0                    0           2
                                         2αp22  ! 2p22
                                    2
                                 :B:      p        p
                              2               p21      2
                     # 4E φð0Þ 1 4  2  ð t2εÞ  αp21  :u:


                                 Γ ðαÞ                 L p ðJ;UÞ
                                             2α
                                         ð
                             2
                      1 4 t2EÞ :n: Λ f ðq Þ 1  8 t2EÞ    M R 1 TrðQÞ:m: Λ σ qðÞ


                         ð
                                N        2                 N
                                        Γ ðα 1 1Þ

            then for t . 0, the set Z E ðtÞ 5 ð Π 1E zÞðtÞ; zAB q  is precompact in H for
            every 0 , E , t. Furthermore
                           2 5OBO   ð    t2E                2
                                 2
             E ðΠ 1 zÞðtÞ2ðΠ 1ε zÞðtÞ #  2  E     ð t2sÞ α21 2 t2E2sÞ α21  uðsÞds
                                              ð


                              Γ ðαÞ     0
                               5OBO  2   ð    t      2  ð  t
                                                                 2
                             1     E    ð t2sÞ α21 uðsÞds 15E  Ejfðs;z s 1y s Þj ds

                                2
                               Γ ðαÞ     t2E          t2E
                                    ð    t2E             ð s
                                5
                             1  2  E    ð t2sÞ α21  2 t2E2sÞ α21  σðτ;z τ 1y τ ÞdWðτÞ    ds
                                               ð
                               Γ ðαÞ     0               2N
                                5     ð    t    ð s
                             1  2  E    ð t2sÞ α21  σðτ;z τ 1y τ ÞdWðτÞ    ds
                               Γ ðαÞ     t2E  2N
            therefore, the set ZðtÞ 5 fðΠ 1 zÞðtÞ: zAB q g is precompact in H. Hence the
            operator is completely continuous.
               Step 2: Π 2 is completely continuous.
               By Step 1, Π 1 is continuous. Now, to prove the operator Π 2 is continu-
            ous, let B q be a bounded set as in Step 1. For zAB q , one has
                                               2
                   EjðΠ 2 zÞðtÞj 5 E   Ð    t  S ðt2sÞðΠ 1 zÞðsÞds # b  Ð  t  ðϕ ðt2sÞÞ EjðΠ 1 zÞðsÞj ds
                                                                  2
                           2
                                                          2
                                  0

                                0                 0  A
                                                      2
                                  2  Ð  t  EjðΠ 1 zÞðsÞj ds # b Oϕ O 1 δ 5 δ 0
                                                  2
                                             2
                                A L                  A L
                            # bOϕ O 1 0
   224   225   226   227   228   229   230   231   232   233   234