Page 234 - Mathematical Techniques of Fractional Order Systems
P. 234

Controllability of Single-valued Chapter | 7  223


                                                                        m
                         m
                                                   m
                            m
             such that J ðx ; u Þ-^ ε as m-N: Since fu gDA ad ; m 5 1; 2; ?; fw g is
                                                                 p
             a bounded subset of the separable reflexive Banach space L ðJ; UÞ, there
                                                                        w  0
                                           m
                                                      p
                                                                     m
                                                  0
             exists a subsequence, relabeled as fu g and u AL ðJ; UÞ such that u  ! u
                p
             in L ðJ; UÞ.
                                                                  0
                Since A ad is closed and convex, then by Marzur lemma u AA ad . Let
               m
             fx gCC b denote the corresponding sequence of solutions of the integral
             equation
                   8
                     φðtÞ; tAð2N;0Š
                   >           ð t                  ð t
                            1
                   >
                   >
                     φð0Þ1              BðsÞu ðsÞds1
                   >                  α21    m            m
                   >             ðt2sÞ                fðs;x Þds
                   >                                      s
                   >
                           ΓðαÞ
                   >            0                    0
                   >
                   >
                   >
                         1
                   >        ð t       ð s
                   >
                   >              α21          m
                   >  1       ðt2sÞ       σðτ;x ÞdWðτÞ ds
                   >                           τ
                   >
                   <    ΓðαÞ  0        2N
              m
             x ðtÞ5             2
                                            s                     s
                   >                       ð                     ð
                                                                        m
                   >    Ð  t            1
                     1   S ðt 2sÞ φð0Þ1              BðτÞu ðτÞdτ 1
                   >      0                       α21    m         fðτ;x Þdτ
                   >            4            ðs2τÞ
                   >    0                                               τ
                                       ΓðαÞ
                   >
                   >                        0                     0
                   >
                   >
                   >
                         1
                   >        ð s        ð τ
                   >
                     1
                   >              α21          m
                   >
                                               η
                   >          ðs2τÞ        σðη;x ÞdWðηÞ dτ ds; tAJ
                   >
                   >    ΓðαÞ            2N
                   :         0
                                                        m 2
             by Theorem 7.6, there exists a ρ . 0 such that Ejx j # ρ; m 5 0; 1; 2; ?:
                       m
                 m
             Let x ðtÞ 5 z ðtÞ 1 yðtÞ. For tAJ,
                                                              2
                        2
             E z ðtÞ2z ðtÞ #6E      1  Ð  t  ðt2sÞ α21   BðsÞu ðsÞ2BðsÞu ðsÞ ds

                m

                                                       0
                                              m

                     0


                               ΓðαÞ 0
                          16E   Ð    t ½fðs;z 1y s Þ2fðs;z 1y s ފds     2
                                     m
                                              0
                                0    s        s
                                                                             2
                          16E      1  Ð  t  ðt2sÞ α21  Ð    s  ½σðτ;z 1y τ Þ2σðτ;z 1y τ ފdWðτÞ ds
                                                              0
                                                   m

                               ΓðαÞ 0      2N      τ          τ

                                                                            2
                          16E   Ð    t 0  1  Ð s  ðs2τÞ α21   BðτÞu ðτÞ2BðτÞu ðτÞ dτ ds

                                                        m
                                                                  0
                                 S ðt2sÞ
                                 0     ΓðαÞ 0
                          16E   Ð    t 0  Ð    s ½fðτ;z 1y τ Þ2fðτ;z 1y τ ފdτ ds   2
                                                       0

                                             m
                                 S ðt2sÞ
                                0       0    τ         τ

                                       "
                                            ð  s
                          16E   Ð    t 0  1   ðs2τÞ α21
                                 S ðt2sÞ
                                0
                                        ΓðαÞ  0


                                                               #   2
                                                                       6
                                Ð  τ                                  X
                            3     ½σðη;z 1y η Þ2σðη;z 1y η ފdWðηÞ dτ ds  #6  I i :
                                       m
                                                 0

                               2N      η         η

                                                                       i51
   229   230   231   232   233   234   235   236   237   238   239