Page 236 - Mathematical Techniques of Fractional Order Systems
P. 236

Controllability of Single-valued Chapter | 7  225


                Thus,
                              8
                                          2p22 2αp22
                              <             p   p
                m     0                               m    0 2
                          2      1    p21
             E z ðtÞ2z ðtÞ    # 6  2  αp21    b    :Bu 2Bu : p ðJ;UÞ

                                                             L
                               Γ ðαÞ
                              :
                                                       2α
                                    t
                                   Ð Ð t  m  0 2     2b M R
                           1 bM f ðρÞ  Oz 2 z O ds 1
                                   0 0  s   s C h    2
                                                    Γ ðα 1 1Þ
                               α          ð t
                             2b TrðQÞM σ ðρÞ    α21  m   0 2
                           1                ðt2sÞ  Oz 2 z O ds
                                   2                 s   s C h
                                αΓ ðαÞ     0
                                        2p22 2αp1p22
                             Oϕ O 2        p   p
                                                           0 2
                                    p21
                                                      m
                           1  2  A  αp21    b      :Bu 2Bu : p
                             Γ ðαÞ                           L ðJ;UÞ
                                                                2 2α12
                                         t
                                                              A
                                 2      Ð Ð s  m  0 2      2Oϕ O b
                           1 Oϕ O bM f ðρÞ  Oz 2 z O dτds 1
                               A         0 0  τ   τ          2
                                                            Γ ðα 1 1Þ
                                                                          9
                                                  t
                                  2 α11
                             2Oϕ O b   TrðQÞM σ ðρÞ  ð ð  s               =
                                                                   0 2
                                                               m
                           1    A                    ðs2τÞ α21 Oz 2 z O dτds
                                      2                        τ   τ C h
                                    αΓ ðαÞ        0 0                     ;
                                                ^
             which implies that there exists a constant N . 0 such that
                             m     0      ^   m    0 2
                                        2
                                                           for tAJ
                        sup E z ðtÞ2z ðtÞ # N:Bu 2Bu : p
                                                     L ðJ;UÞ
                        tAJ
                                                  m    0  2    s
             since B is strongly continuous, one has :Bu 2Bu : p   ! 0as m-N
                                                         L ðJ;UÞ
                                  s
                             0
                                2
                      m
             thus,  Ejz ðtÞ 2 z ðtÞj  ! 0as m-N,   which   is  equivalent  to
               m   0                              m  s  0
             Ox 2 x O C b -0as m-N, this yields that x  ! x in C b as m-N. Note
             that ðH 20 Þ implies the assumptions of Balder (1987). Hence by Balder’s theo-
             rem, one can conclude that ðx; x t ; uÞ-E  Ð    t  Lðt; x t ; xðtÞ; uðtÞÞdt is sequentially

                                               0
                                                               1
             lower  semicontinuous  in  the  strong  topology  of  L ðJ; HÞ.  Since,
                                                              p
                       1
              p
             L ðJ; UÞCL ðJ; UÞ, J is weakly lower semicontinuous on L ðJ; UÞ, and since
                                                       0
             by ðH 20 ÞðivÞ; J .2N, J attains its infimum at u AA ad , i.e.,
                       ð b                      ð b
             ^ E5 lim E  Lðt;x ;x ðtÞ;u ðtÞÞdt $E  Lðt;x ;x ðtÞ;u ðtÞÞdt 5J ðu Þ$^ E:
                                                                       0
                                                     0
                                                            0
                                                       0
                            m
                               m
                                    m
               m-N     0    t                   0    t
                This completes the proof.
             7.4  CONCLUSION
             This chapter studied the controllability results of different classes of single-
             valued and multivalued FSDEs. In the first part of this chapter, the approxi-
             mate controllability of some class of fractional stochastic integro-differential
             inclusion, and solvability and existence of optimal control of FSDEs of order
   231   232   233   234   235   236   237   238   239   240   241