Page 239 - Mathematical Techniques of Fractional Order Systems
P. 239

228  Mathematical Techniques of Fractional Order Systems


            Peng, J., Li, K., 2012. A novel characteristic of solution operator for the fractional abstract cau-
               chy problem. J. Math. Anal. Applicat. 385 (2), 786 796.
            Podlubny, I., 1998. Fractional Differential Equations: An Introduction to Fractional Derivatives,
               Fractional Differential Equations, to Methods of Their Solution and Some of Their
               Applications, Vol. 198. Academic press.
            Pru ¨ss, J., 2013. Evolutionary Integral Equations and Applications., Vol. 87. Birkha ¨user.
            Srivastava, H.M., Trujillo, J.J., et al., 2006. Theory and applications of fractional differential
               equations.
            Vijayakumar, V., Ravichandran, C., Murugesu, R., Trujillo, J., 2014. Controllability results for a
               class of fractional semilinear integro-differential inclusions via resolvent operators. Appl.
               Math. Computation 247, 152 161.
            Wang, J., Zhou, Y., 2011a. A class of fractional evolution equations and optimal controls.
               Nonlinear Anal. Real World Applicat. 12 (1), 262 272.
            Wang, J., Zhou, Y., 2011b. Existence and controllability results for fractional semilinear differ-
               ential inclusions. Nonlinear Anal. Real World Applicat. 12 (6), 3642 3653.
            Wang, J., Zhou, Y., Medved’, M., 2012. On the solvability and optimal controls of fractional
               integrodifferential evolution systems with infinite delay. J. Optimiz. Theory Applicat. 152
               (1), 31 50.
            Zhou, Y., 2016. Fractional Evolution Equations and Inclusions: Analysis and Control. Academic
               Press, London.
   234   235   236   237   238   239   240   241   242   243   244