Page 232 - Mathematical Techniques of Fractional Order Systems
P. 232

Controllability of Single-valued Chapter | 7  221


                           2
                                              2
                                2
                But Oz s 1 y s O # 4l sup  EjzðsÞj 1 4OφO 2  as proved in Step 1. If
                           C h      sA½0;tŠ          C h

             one lets q ðtÞ be the right-hand side of the above inequality then,
                    2

             Oz s 1 y s O # q ðtÞ; tAJ and therefore (7.19) becomes
                    C h
                                        2αp22   ! 2p22
                                  8OBO 2  p       p
                    2          2             p21       2
               EjzðtÞj  # 8Ejφð0Þj 1  2  b   αp21   OuO
                                  Γ ðαÞ                L p ðJ;UÞ
                                             2α
                           Ð t            16b M R
                       1 8b  nðsÞΛ f ðq ðsÞÞds 1

                           0               2
                                          Γ ðα 1 1Þ
                            α    ð t
                         16b TrðQÞ     α21               2    2     2
                       1    2      ðt2sÞ  mðsÞΛ σ ðq ðsÞÞds 1 8b Oϕ O 1Ejφð0Þj

                                                            A L
                          αΓ ðαÞ  0
                                      2αp22   ! 2p22                    ð7:20Þ
                         8b Oϕ O 1 OBO 2  p     p
                               2
                           2
                                           p21
                       1      A L    b     αp21   OuO 2
                              2
                             Γ ðαÞ                   L p ðJ;UÞ
                                                      2
                                                16Oϕ O 1 b 2α12  M R
                          3
                       1 8b Oϕ O 2  Ð  t  nðsÞΛ f ðq ðsÞÞds 1  A L

                             A L 1 0                2
                                                   Γ ðα 1 1Þ
                               2
                         16Oϕ O 1 b 2α11  TrðQÞ  ð  t

                       1     A L           mðsÞΛ σ ðq ðsÞÞds
                              2
                             Γ ðα 1 1Þ   0

             using (7.20) in the definition of q ðsÞ, one has
                                  2
                 q ðtÞ 5 4l sup EjzðsÞj 1 4OφO 2
                         2

                                         C h
                          sA½0;tŠ
                         2
                                          2αp22   ! 2p22
                                    8OBO 2  p       p
                           8Ejφð0Þj 1  2  b    αp21   OuO
                         2 6     2             p21       2
                     # 4l 4
                                    Γ ðαÞ                L p ðJ;UÞ
                                           2α
                         Ð  t            16b M R

                     1 8b  nðsÞΛ f ðq ðsÞÞds 1
                          0              2
                                        Γ ðα 1 1Þ
                          α     ð  t
                       16b TrðQÞ      α21

                     1     2     ðt2sÞ  mðsÞΛ σ ðq ðsÞÞds
                         αΓ ðαÞ  0
                                                    2αp22   ! 2p22
                                       8b Oϕ O 1 OBO 2  p      p
                                         2
                                              2
                                    2
                         2
                              2
                     1 8b Oϕ O 1 Ejφð0Þj 1  A L    b      p21    OuO 2
                            A L             2            αp21      L p ðJ;UÞ
                                           Γ ðαÞ
                                                    2
                     1 8b Oϕ O 2  Ð t  nðsÞΛ f ðq ðsÞÞds 1  16Oϕ O 1 b 2α12  M R
                                                  A L
                         3

                                                   2
                            A L 1 0
                                                  Γ ðα 1 1Þ
                                                     3
                             2
                       16Oϕ O 1 b 2α11 TrðQÞ  ð t
                     1     A L           mðsÞΛ σ ðq ðsÞÞds 1 4OφO 2

                                                     5
                             2
                            Γ ðα 1 1Þ   0                   C h
             consequently
                                         Oq O

                                                                     # 1
                                           2p22

                                   2αp22     p21  p
                               OBO 2
                          2
                                              2
                   2
                 4l 8Ejφð0Þj 1 8  2  b  p   ðb 1 1ÞOuO 2  1 Θ 1 4OφO 2
                              Γ ðαÞ   αp21           L p ðJ;UÞ     C h
   227   228   229   230   231   232   233   234   235   236   237