Page 226 - Mathematical Techniques of Fractional Order Systems
P. 226

Controllability of Single-valued Chapter | 7  215


                    0                             0
                Set C 5 fzAC b ; z 0 5 0AC h g. For any zAC ,
                    b                             b
                                                   1              1

                                                2 2            2 2
                                   1 sup EjzðsÞj  5 sup EjzðsÞj
                       OzO b 5 Oz 0 O C h
                                     sA½0;bŠ         sA½0;bŠ
                   0
             thus ðC ; OUO b Þ is a Banach space. For each positive number q, set
                   b
                      0
                           2
             B q 5 fyAC ; OyO # qg, then for each q, B q is clearly a bounded closed con-
                      b    b
                      0
             vex set in C . For zAB q , from Lemma 7.4, one can get
                      b
             Oz t 1 y t O 2  # 2ðOz t O 1 Oy t O Þ
                              2
                                     2
                     C h      C h    C h

                                                                  2
                                         2
                            2
                                                2
                                                    2
                       # 4 l sup    EjzðsÞj 1 Oz 0 O 1 l sup  EjyðsÞj 1 Oy 0 O 2
                               sA½0;tŠ          C h     sA½0;tŠ          C h
                          2
                                   2
                       # 4l q 1 4OφO 5 q :

                                   C h
                                   0
                Let the operator Π on C be defined by
                                   b
                     8
                       0; tAð2N;0Š
                     >
                     >
                              1
                     >          ð  t               ð t
                     >
                       φð0Þ1             BðsÞuðsÞds1  fðs;z s 1y s Þds
                     >                α21
                     >
                     >            ðt2sÞ
                     >
                     >       ΓðαÞ  0                0
                     >
                     >
                     >
                     >                                                "
                     >       ð t       ð s                    ð t
                     >
                     >    1
                     >             α21                           0
                     > 1       ðt2sÞ       σðτ;z τ 1y τ ÞdWðτÞ ds1  S ðt2sÞ φð0Þ
                     <
              ðΠzÞðtÞ5   ΓðαÞ  0        2N                     0
                     >       ð s                 ð  s
                     >    1
                     >             α21
                     > 1              BðτÞuðτÞdτ1  fðτ;z τ 1y τ Þdτ
                     >         ðs2τÞ
                     >
                         ΓðαÞ
                     >
                     >        0                   0
                     >
                     >
                     >                                       #
                     >
                     >       ð s       ð τ
                     >    1
                     >             α21
                     > 1       ðs2τÞ       σðη;z η 1y η ÞdWðηÞ dτ ds; tAJ:
                     >
                     >
                     :   ΓðαÞ  0        2N
                It is obvious that the operator Φ has a fixed point if and only if Π
             has a fixed point. In order to prove that Π is continuous, decompose
             Π as Π 5 Π 1 1 Π 2 , where the operators Π 1 and Π 2 are defined respectively
             by
                                       t                  ð t
                                      ð
                                   1
                  ðΠ 1 zÞðtÞ 5 φð0Þ 1   ðt2sÞ α21 BðsÞuðsÞds 1  fðs; z s 1 y s Þds
                                 ΓðαÞ  0                   0
                               1  ð t   α21    ð s
                           1       ðt2sÞ        σðτ; z τ 1 y τ ÞdWðτÞ ds
                             ΓðαÞ  0         2N
                            Ð  t
                  ðΠ 2 zÞðtÞ 5  S ðt 2 sÞðΠ 1 zÞðsÞds:
                              0
                            0
                One needs to prove that Π 1 and Π 2 are completely continuous. It follows
             from the hypothesis ðH 14 Þ that S ðtÞ is compact for all t . 0 (see Herna ´ndez
                                        0
             et al., 2010).
   221   222   223   224   225   226   227   228   229   230   231