Page 223 - Mathematical Techniques of Fractional Order Systems
P. 223

212  Mathematical Techniques of Fractional Order Systems


                                                       1
               (ii) There is a positive integrable function mAL ð½0;bŠÞ and a continuous
                   nondecreasing function Λ σ : ½0;NÞ-ð0;NÞ such that for every
                   ðt; xÞAJ 3 C h ,

                         ð t                            Λ σ ðrÞ
                                 2
                                               2
                           Ejσðt; xÞj 0ds # mðtÞΛ σ ðOxO Þ;  lim inf  5 ϒ 2 , N:
                                 L             C h  r-N
                          0       2                       r
                                                   2
                                                          2
               (iii) For arbitrary ξ ; ξ AC h ; satisfying Oξ O ; Oξ O # ρ, there exists a
                               1
                                 2
                                                         2 C h
                                                 1 C h
                   M σ ðρÞ . 0 such that
                            ð t
                                              2             2
                              E σðs; ξ Þ2σðs; ξ Þ ds # M σ ðρÞ:ξ 2ξ : :
                                    1


                                                       1
                                           2
                                                          2 C h
                             0
                                               Ð 0
               (H 17 ) For each φAC h ; RðtÞ 5 lim a-N 2a  σðt; φÞdWðsÞ exists and is con-
               tinuous. Further there exists a positive constant M R such that
                     2
               EjRðtÞj # M R .
                     H
               (H 18 ) Let U be a separable reflexive Hilbert space from which the control
               u takes the values. Operator BAL N ðJ; LðU; HÞÞ; OBO stands for the norm
               of operator B on Hilbert space L N ðJ; LðU; HÞÞ.
                                               U
               (H 19 ) The multivalued map A:J-2 f[g has closed, convex, and
               bounded values. AðUÞ is graph measurable and AðUÞDΣ, where Σ is a
               bounded set of U.
               Let the admissible set be,

                                                               ð  b
                                                                     2
            A ad 5 u : J 3 Ω-H= u is F t 2 adapted stochastic process and E  OuðtÞO dt , N :
                                                                0
            7.3.1.1 Existence of Mild Solution
            The subsection deals with the existence result for (7.15) (7.16), this prob-
            lem is equivalent to the following integral equation
                   8
                     φðtÞ; tAð2N; 0Š
                   >
                   >           ð t                ð t
                   >        1                   1
                   >                α21                 α21
                     φð0Þ 1            AxðsÞds 1           BðsÞuðsÞds
                   >
                   >            ðt2sÞ               ðt2sÞ
                   <
               xðtÞ 5      ΓðαÞ 0              ΓðαÞ 0
                   >                    ð  t      ð  s
                   >     Ð  t        1        α21
                   >
                   >   1   fðs; x s Þds 1  ðt2sÞ     σðτ; x τ ÞdWðτÞ ds; tAJ
                   >      0
                   >
                   :                ΓðαÞ 0        2N
               By Lemma 7.5, and the above representation, the mild solution of
            (7.15) (7.16) can be defined as follows
   218   219   220   221   222   223   224   225   226   227   228