Page 333 - Mathematical Techniques of Fractional Order Systems
P. 333

Multiswitching Synchronization Chapter | 11  323


             Definition 1: Let nAN be such that n 2 1 , α , n, the Riemann Liouville
             definition (Podlubny, 1998) for fractional derivative of order α for any func-
             tion say f(t) is given as:
                                     α
                            α
                          a D fðtÞ 5  d fðtÞ α
                            t
                                   dðt2aÞ
                                      1    d n  ð t                    ð11:2Þ
                                 5             ðt2qÞ n2α21 fðqÞdðqÞ
                                   Γðn 2 αÞ dt n  0
             where n is the first integer such that, n 2 1 # α , n and Γ denotes the
             Gamma function which is defined as:
                                          ð N
                                    Γ xðÞ 5  t x21 2t                  ð11:3Þ
                                                 e dt
                                           0
             Definition 2: The Grunwald Letnikov definition (Podlubny, 1998) for
             derivative of fractional order α, of any function f(t) is defined as under:
                             α
                            d fðtÞ
                    α
                  a D fðtÞ 5     α
                    t
                           dðt2aÞ
                                                     0    2     31
                                        2α N                           ð11:4Þ
                                        X      j α          t 2 a
                                   t2a
                         5 lim N-N         ð21Þ     f  @ t 2 j 4  5A
                                    N             j          N
                                         j51
                This definition is considered as simplest and easiest definition to be used
             in fractional calculus.
                                   n
             Definition 3: Let fAC ; nAN. The (left-sided) Caputo definition
                                   21
             (Podlubny, 1998) of derivative of fractional order α is defined as:
                          8         ð  t  n
                               1        f ðτÞ
                          >
                          >                     dτ;  :n 2 1 , α , n
                                           α112n
                          >
                          >  Γðn 2 αÞ  0 ðt2τÞ
                          <
                       α
                    0 D 5            n                                 ð11:5Þ
                       t
                                    d f ðtÞ
                          >
                          >              ;             :α 5 n
                          >
                                     dt
                          >            n
                          :
             where n is the smallest integer, greater than α.
                The Grunwald Letnikov and the Riemann Liouville definitions are
             equivalent for the functions fðtÞ having n continuous derivatives for t $ 0such
             that n 2 1 # α , n. In terms of Laplace transform, the Riemann Liouville
             fractional integral and derivative is as follows:
                                      α       α
                                 Lf 0 D fðtÞg 5 S FðsÞ:α # 0:          ð11:6Þ
                                      t
   328   329   330   331   332   333   334   335   336   337   338