Page 338 - Mathematical Techniques of Fractional Order Systems
P. 338

328  Mathematical Techniques of Fractional Order Systems


                             (A)                           (B)

                  40                           10

                z 1 (t)  20                  w 1 (t)  0

                  0                           −10
                  20                           40
                                          20                           20
                       0 0          0 0             20           0 0
                                                    20
                     y (t)  −20  −20  x (t)       z (t)  0  −20  x 1 (t)
                                                   1
                      1
                                    1
                              (C)                          (D)
                  10                          10
                w 1 (t)  0                    w 1 (t)  0

                 −10                          −10
                  40                           20
                                          20                           20
                      20
                      20                             0 0
                                    0 0                          0 0
                      (t)  0  −20  y (t)          Y (t)  −20  −20
                     z 1            1              1             x 1 (t)
            FIGURE 11.2 3D Phase Portrait of the fractional order hyperchaotic Rossler system in
            (A) (x1, y1, z1)-space,
            (B) (x1, z1, w1)-space,
            (C) (y1, z1, w1)-space,
            (D) (x1, y1, w1)-space.


            where x 2 ; y 2 ; z 2 ; w 2 are the state variables, q . 0 is the fractional order and
            a 1 ; a 2 ; a 3 ; a 4 ; a 5 are the parameters.
               For the parameters values a 1 5 25; a 2 5 60; a 3 5 40; a 4 5 4; a 5 5 5 and
            q 5 0.95 the four Lyapunov exponents of the system (11.15) are calculated
            as γ 5 3:0057, γ 5 0:0304, γ 52 0:1631, and γ 5 46:1578, respectively.
                1         2          3                4
               Therefore, the Kaplan Yorke dimension of system is
                                             j   γ
                                            X     i
                                    D  5 j 1
                                               jγ
                                             i51  j11  j
                                       5 3:0622
                                               P j           P j11
            where j is the largest integer satisfying  i51  γ $ 0 and  i51  γ , 0. The
                                                     j
                                                                   j
            Lyapunov dimension is fractional, which implies system (11.15) is really a
            dissipative system. In Figs. 11.4 and 11.5, 3D phase portraits and 2D phase
            portraits are displayed, it is clear that the system has a double-scroll hyperch-
            aotic attractor.
   333   334   335   336   337   338   339   340   341   342   343