Page 341 - Mathematical Techniques of Fractional Order Systems
P. 341

Multiswitching Synchronization Chapter | 11  331


             where ψ ; ψ ; ψ and ψ are the controllers which are to be determined
                    1   2  3     4
             using active control technique. Our goal is to find suitable controllers
             ψ ; ψ ; ψ and ψ  such that the drive system (11.14) asymptotically
              1   2  3     4
             synchronizes with response system (11.16).
                Out of various possible switches, in this chapter we present results for
             three randomly selected error state vector combinations.
                Let the switching error states be defined as :
                                 8
                                   e 1 5 x 2 2 y 1
                                 >
                                 >
                                 <
                                   e 2 5 y 2 2 z 1
                                                Switch 1              ð11:17Þ
                                   e 3 5 z 2 2 w 1
                                 >
                                 >
                                 :
                                   e 3 5 w 2 2 x 1
                                 8
                                   e 1 5 x 2 2 z 1
                                 >
                                 >
                                 <
                                   e 2 5 y 2 2 w 1
                                                Switch 2              ð11:18Þ
                                   e 3 5 z 2 2 x 1
                                 >
                                 >
                                 :
                                   e 3 5 w 2 2 y 1
             where we refer to Eqs. (11.17) and (11.18) as switch (11.1) and switch
             (11.2) respectively.
             11.7.1 Switch 1
             The error dynamical system for switch 1 is obtained as follows:
                                      q     q      q
                                   8
                                     d e 1  d x 2  d y 1
                                   >     5      2
                                   >
                                     dt     dt    dt
                                   >   q      q     q
                                   >
                                   >
                                   >
                                   >
                                      q     q      q
                                   >
                                     d e 2  d y 2  d z 1
                                   >
                                   >
                                   >     5      2
                                   >
                                     dt     dt    dt
                                   >   q      q     q
                                   <
                                      q     q      q                  ð11:19Þ
                                     d e 3  d z 2  d w 1
                                   >
                                   >     5     2
                                   >   q     q      q
                                   >  dt    dt     dt
                                   >
                                   >
                                   >
                                   >  q     q      q
                                   >
                                   >  d e 4  d w 2  d x 1
                                   >     5      2
                                   >
                                     dt     dt     dt
                                   >   q      q     q
                                   :
                Using Eqs. (11.14), (11.16) and (11.17) the error system (11.19) is
             obtained as :
                   8   q
                      d e 1
                   >
                                           1
                   >      52 a 1 x 2 1 a 2 y 2 1 ψ 2 dx 1 1 x 1 z 1 2 cy 1 1 w 1
                   >    q
                   >  dt
                   >
                   >
                       q
                   >
                   >
                      d e 2
                   >
                   >
                   >
                                                 2
                   >    q  5 a 3 x 2 2 x 2 z 2 2 y 2 1 w 2 1 ψ 2 x 1 y 1 1 bz 1
                      dt
                   >
                   <
                       q                                              ð11:20Þ
                      d e 3
                   >         2
                   >      5 x 2 a 4 ðx 2 1 z 2 Þ 1 ψ x 1 2 k
                   >    q    2              3
                   >  dt
                   >
                   >
                   >
                   >   q
                   >
                   >  d e 4
                   >
                                     4
                   >      52 a 5 x 2 1 ψ 2 a 1 ðy 1 2 x 1 Þ
                   >    q
                   :  dt
   336   337   338   339   340   341   342   343   344   345   346