Page 342 - Mathematical Techniques of Fractional Order Systems
P. 342

332  Mathematical Techniques of Fractional Order Systems


               We define the active control functions ψ ðtÞ as follows :
                                                i
                     8
                       ψ 5 V 1 1 ða 2 1 cÞy 1 2 a 2 y 2 1 dx 1 2 x 1 z 1 2 w 1
                     >  1
                     >
                     <
                       ψ 5 V 2 2 a 3 x 2 1 x 2 z 2 1 ð1 2 bÞz 1 2 w 2 1 x 1 y 1  ð11:21Þ
                        2
                                 2
                       ψ 5 V 3 2 x 1 a 4 x 2 1 a 4 w 1 1 x 1 1 k
                     >  3        2
                     >
                     :
                       ψ 5 V 4 1 a 5 y 2 1 a 1 y 1 2 a 1 w 2
                        4
               The terms V i ðtÞ are linear functions of the error term e i ðtÞ. With the
            choice of ψ ðtÞ given by (11.21), the error system (11.20) becomes
                      i
                                     q
                                  8
                                    d e 1
                                  >     52 a 2 e 1 1 V 1 ðtÞ
                                  >
                                    dt
                                  >   q
                                  >
                                  >
                                  >
                                  >
                                     q
                                  >
                                    d e 2
                                  >
                                  >
                                  >     52 e 2 1 V 2 ðtÞ
                                  >
                                    dt
                                  >   q
                                  <
                                     q                               ð11:22Þ
                                    d e 3
                                  >
                                  >     52 a 4 e 3 1 V 3 ðtÞ
                                  >   q
                                  >  dt
                                  >
                                  >
                                  >
                                  >  q
                                    d e 4
                                  >
                                  >
                                  >
                                  >     52 a 1 e 4 1 V 4 ðtÞ
                                    dt
                                  >   q
                                  :
               The control terms V i ðtÞ are chosen so that the system (11.22) becomes
            stable. There is not a unique choice for such functions.
               We choose
                                     2   3    2  3
                                      V 1      e 1
                                      V 2      e 2
                                     6   7    6  7
                                          5 A
                                     6   7    6  7                   ð11:23Þ
                                      V 3      e 3
                                     4   5    4  5
                                      V 4      e 4
            where A is a 4 3 4 real matrix, chosen so that all eigenvalues λ i of the
            system (11.23) satisfy the condition
                                               απ
                                      jargðλ i Þj .                  ð11:24Þ
                                                2
            if we choose
                               2                           3
                                a 2 2 61  0     0      0
                                   0     21     0      0   7
                           A 5  6                          7         ð11:25Þ
                               6
                               4   0     0   a 4 2 5   0   5
                                   0     0      0    a 1 2 26
               Then the eigenvalues of the linear system (11.23) are  1,  1,  1, and
             1. Hence the condition (11.24) is satisfied for and we get the required syn-
            chronization. Numerical simulations for switch 1 are performed to demonstrate
            the theoretical results. The parameter values for which the system (11.14) and
            (11.15) exhibits chaotic behavior are taken as a 5 36; b 5 3; c 5 28;
            d 52 16; k 5 0:5; a 1 5 25; a 2 5 60; a 3 5 40; a 4 5 4; a 5 5 5. The fractional
   337   338   339   340   341   342   343   344   345   346   347