Page 353 - Mathematical Techniques of Fractional Order Systems
P. 353
Multiswitching Synchronization Chapter | 11 343
Ouannas, A., Azar, A.T., Ziar, T., Vaidyanathan, S., 2017h. Fractional inverse generalized chaos
synchronization between different dimensional systems. In: Azar, A.T., Vaidyanathan, S.,
Ouannas, A. (Eds.), Fractional Order Control and Synchronization of Chaotic Systems.
Springer International Publishing, Cham, pp. 525 551.
Ouannas, A., Azar, A.T., Ziar, T., Vaidyanathan, S., 2017i. A new method to synchronize frac-
tional chaotic systems with different dimensions. In: Azar, A.T., Vaidyanathan, S., Ouannas,
A. (Eds.), Fractional Order Control and Synchronization of Chaotic Systems. Springer
International Publishing, Cham, pp. 581 611.
Ouannas, A., Azar, A.T., Ziar, T., Vaidyanathan, S., 2017j. On new fractional inverse matrix
projective synchronization schemes. In: Azar, A.T., Vaidyanathan, S., Ouannas, A. (Eds.),
Fractional Order Control and Synchronization of Chaotic Systems. Springer International
Publishing, Cham, pp. 497 524.
Ouannas, A., Grassi, G., Azar, A.T., Radwan, A.G., Volos, C., Pham, V.-T., et al., 2017k. Dead-
beat synchronization control in discrete-time chaotic systems. In: 6th International
Conference on Modern Circuits and Systems Technologies (MOCAST). pp. 1 4.
Pecora, L.M., Carroll, T.L., 1990. Synchronization in chaotic systems. Physical review letters 64
(8), 821.
Petras, I., 2008. Stability of fractional-order systems with rational orders. arXiv preprint
arXiv:0811.4102.
Petras, I., 2011. Fractional-order Nonlinear Systems: Modeling, Analysis and Simulation.
Springer Science & Business Media.
Pham, V.-T., Vaidyanathan, S., Volos, C.K., Azar, A.T., Hoang, T.M., Van Yem, V., 2017. A
three-dimensional no-equilibrium chaotic system: analysis, synchronization and its fractional
order form. In: Azar, A.T., Vaidyanathan, S., Ouannas, A. (Eds.), Fractional Order Control
and Synchronization of Chaotic Systems. Springer International Publishing, Cham,
pp. 449 470.
Podlubny, I., 1998. Fractional Differential Equations: An Introduction to Fractional Derivatives,
Fractional Differential Equations, to Methods of Their Solution and Some of Their
Applications, Vol. 198. Academic press.
Rosenblum, M.G., Pikovsky, A.S., Kurths, J., 1996. Phase synchronization of chaotic oscillators.
Phys. Rev. Lett. 76 (11), 1804.
Shahverdiev, E., Sivaprakasam, S., Shore, K., 2002. Lag synchronization in time-delayed sys-
tems. Phys. Lett. A 292 (6), 320 324.
Singh, S., Azar, A.T., Ouannas, A., Zhu, Q., Zhang, W., Na, J., 2017. Sliding mode control tech-
nique for multi-switching synchronization of chaotic systems. In: 9th International
Conference on Modelling, Identification and Control (ICMIC 2017), July 10-12, 2017,
Kunming, China.
Soliman, N.S., Said, L.A., Azar, A.T., Madian, A.H., Radwan, A.G., Ounnas, A., 2017.
Fractional controllable multi-scroll v-shape attractor with parameters effect. In: 6th
International Conference on Modern Circuits and Systems Technologies (MOCAST). pp.
1 4.
Tavazoei, M.S., Haeri, M., 2009. Describing function based methods for predicting chaos in a
class of fractional order differential equations. Nonlinear Dynam. 57 (3), 363 373.
Tolba, M.F., AbdelAty, A.M., Saida, L.A., Elwakil, A.S., Azar, A.T., Madian, A.H., et al., 2017.
Fpga realization of caputo and grnwald-letnikov operators. In: 6th International Conference
on Modern Circuits and Systems Technologies (MOCAST). pp. 1 4.
Ucar, A., Lonngren, K.E., Bai, E.-W., 2008. Multi-switching synchronization of chaotic systems
with active controllers. Chaos Solitons Fractals 38 (1), 254 262.