Page 351 - Mathematical Techniques of Fractional Order Systems
P. 351
Multiswitching Synchronization Chapter | 11 341
Caputo, M., 1967. Linear models of dissipation whose q is almost frequency independentii.
Geophys. J. Int. 13 (5), 529 539.
Deng, W., Li, C., 2005. Chaos synchronization of the fractional lu ¨ system. Phys. A: Statist.
Mech.Applicat. 353, 61 72.
Diethelm, K., Ford, N.J., Freed, A.D., 2002. A predictor-corrector approach for the numerical
solution of fractional differential equations. Nonlinear Dynam. 29 (1), 3 22.
Du, H., Zeng, Q., Wang, C., 2008. Function projective synchronization of different chaotic
systems with uncertain parameters. Phys. Lett. A 372 (33), 5402 5410.
Du, H., Zeng, Q., Wang, C., 2009. Modified function projective synchronization of chaotic
system. Chaos Solitons Fractals 42 (4), 2399 2404.
El-Sayed, A., Nour, H., Elsaid, A., Matouk, A., Elsonbaty, A., 2016. Dynamical behaviors, cir-
cuit realization, chaos control, and synchronization of a new fractional order hyperchaotic
system. Appl. Math. Model. 40 (5), 3516 3534.
Gao, T., Chen, Z., Yuan, Z., Yu, D., 2007. Adaptive synchronization of a new hyperchaotic sys-
tem with uncertain parameters. Chaos Solitons Fractals 33 (3), 922 928.
Gao, Y., Liang, C., Wu, Q., Yuan, H., 2015. A new fractional-order hyperchaotic system and its
modified projective synchronization. Chaos Solitons Fractals 76, 190 204.
Ge, Z.-M., Ou, C.-Y., 2007. Chaos in a fractional order modified duffing system. Chaos Solitons
Fractals 34 (2), 262 291.
Grassi, G., Ouannas, A., Azar, A.T., Radwan, A.G., Volos, C., Pham, V.-T., et al., 2017. Chaos
synchronisation of continuous systems via scalar signal. In: 6th International Conference on
Modern Circuits and Systems Technologies (MOCAST). pp. 1 4.
Heaviside, O., 1970. Electromagnetic theory (chelsea pc, new york, 1971). Electrical Papers.
Hilfer, R., 2000. Applications of Fractional Calculus in Physics. World Scientific.
Keil, F., Mackens, W., Voß, H., Werther, J., 2012. Scientific Computing in Chemical
Engineering II: Computational Fluid Dynamics, Reaction Engineering, and Molecular
Properties. Springer Science & Business Media.
Khan, A., Bhat, M.A., 2016a. Hybrid projective synchronization of fractional order chaotic sys-
tems with fractional order in the interval (1, 2). Nonlinear Dyn. Syst. Theory 16 (4),
350 365.
Khan, A., Bhat, M.A., 2016b. Hyper-chaotic analysis and adaptive multi-switching synchroniza-
tion of a novel asymmetric non-linear dynamical system. Int. J. Dynam. Control 1 11.
Khan, A., Bhat, M.A., 2017. Multi-switching combination combination synchronization of non-
identical fractional-order chaotic systems. Math. Methods Appl. Sci.
Khan, A., et al., 2016. Hybrid function projective synchronization of chaotic systems via adap-
tive control. Int. J. Dynam. Control 1 8.
Khan, A., et al., 2017a. Combination synchronization of genesio time delay chaotic system via
robust adaptive sliding mode control. Int. J. Dynam. Control 1 10.
Khan, A., et al., 2017b. Combination synchronization of time-delay chaotic system via robust
adaptive sliding mode control. Pramana 88 (6), 91.
Khan, A., et al., 2017c. Increased and reduced order synchronisations between 5d and 6d
hyperchaotic systems. Indian J. Ind. Appl. Math. 8 (1), 118 131.
Kilbas, A., Marichev, O., Samko, S., 1993. Fractional Integral and Derivatives (Theory and
Applications), 1. Gordon and Breach, Switzerland, p. 1 (993).
Koeller, R., 1984. Applications of fractional calculus to the theory of viscoelasticity. ASME
Trans. J. Appl. Mech. 51, 299 307 (ISSN 0021-8936).
Koeller, R., 1986. Polynomial operators, stieltjes convolution, and fractional calculus in heredi-
tary mechanics. Acta Mech. 58 (3), 251 264.