Page 350 - Mathematical Techniques of Fractional Order Systems
P. 350
340 Mathematical Techniques of Fractional Order Systems
11.8 CONCLUSION
In this chapter, we investigated multiswitching complete synchronization
schemes between nonidentical fractional order hyperchaotic systems. The idea
of multiswitching complete synchronization is implemented on two nonidenti-
cal hyperchaotic systems. The brief dynamical analysis of hyperchaotic systems
is also given. The controllers are obtained using the very well known technique
of active control. Based on the stability of fractional order chaotic systems, the
stability of fractional order error dynamical system is obtained. Lastly, numeri-
cal results are given to confirm the efficiency of the proposed synchronization
scheme. Theoretical and numerical results are in excellent agreement.
REFERENCES
Agarwal, R.P., El-Sayed, A.M., Salman, S.M., 2013. Fractional-order chuas system: discretiza-
tion, bifurcation and chaos. Adv. Diff. Eq. 2013 (1), 320.
Ajayi, A.A., Ojo, S.K., Vincent, E.U., Njah, N.A., 2014. Multiswitching synchronization of a
driven hyperchaotic circuit using active backstepping. J. Nonlinear Dynam. 2014.
Aleksandr, L., Pogromsky, A.Y., et al., 1998. Introduction to Control of Oscillations and Chaos.,
Vol. 35. World Scientific.
Azar, A.T., Vaidyanathan, S., 2015a. Chaos Modeling and Control Systems Design. Vol. 581 of
Studies inComputational Intelligence. Studies in Computational Intelligence. Springer, Germany.
Azar, A.T., Vaidyanathan, S., 2015b. Computational Intelligence Applications in Modelling and
Control. Vol. 575. Studies inComputational Intelligence. Springer, Berlin, Germany.
Azar, A.T., Vaidyanathan, S., 2015c. Handboook of Research on Advanced Intelligent Control
Engineering and Automation. IGI Global, New York, USA, New York, USA.
Azar, A.T., Vaidyanathan, S., 2016. Advances in Chaos Theory and Intelligent Control., Vol.
337. Springer, Berlin, Germany.
Azar, A.T., Zhu, Q., 2015. Advances and Applications in Sliding Mode Control systems. Vol.
576. Studies inComputational Intelligence. Springer, Berlin, Germany.
Azar, A.T., Vaidyanathan, S., Ouannas, A., 2017a. Fractional Order Control and Synchronization of
Chaotic Systems. Vol. 688. Studies inComputational Intelligence. Springer, Berlin, Germany.
Azar, A.T., Volos, C., Gerodimos, N.A., Tombras, G.S., Pham, V.-T., Radwan, A.G., et al.,
2017b. A novel chaotic system without equilibrium: dynamics, synchronization, and circuit
realization. Complexity 2017, (Article ID 7871467), 11 pages.
Azar, A.T., Ouannas, A., Singh, S., 2018. Control of New Type of Fractional Chaos
Synchronization. Springer International Publishing, Cham, pp. 47 56, URL https://doi.org/
10.1007/978-3-319-64861-3_5.
Becker, G., Packard, A., 1994. Robust performance of linear parametrically varying systems
using parametrically-dependent linear feedback. Syst. Control Lett. 23 (3), 205 215.
Boulkroune, A., Bouzeriba, A., Bouden, T., Azar, A.T., 2016a. Fuzzy adaptive synchronization
of uncertain fractional-order chaotic systems. Advances in Chaos Theory and Intelligent
Control. Springer, Berlin, Germany, pp. 681 697.
Boulkroune, A., Hamel, S., Azar, A.T., Vaidyanathan, S., 2016b. Fuzzy control-based function
synchronization of unknown chaotic systems with dead-zone input. In: Azar, A.T.,
Vaidyanathan, S. (Eds.), Advances in Chaos Theory and Intelligent Control. Springer
International Publishing, Cham, pp. 699 718.