Page 355 - Mathematical Techniques of Fractional Order Systems
P. 355

Multiswitching Synchronization Chapter | 11  345


             Vaidyanathan, S., Sampath, S., Azar, A.T., 2015c. Global chaos synchronisation of identical cha-
                otic systems via novel sliding mode control method and its application to zhu system. Int. J.
                Model. Identif. Control 23 (1), 92 100.
             Vaidyanathan, S., Azar, A.T., Ouannas, A., 2017a. An eight-term 3-d novel chaotic system with
                three quadratic nonlinearities, its adaptive feedback control and synchronization. In: Azar,
                A.T., Vaidyanathan, S., Ouannas, A. (Eds.), Fractional Order Control and Synchronization
                of Chaotic Systems. Springer International Publishing, Cham, pp. 719 746.
             Vaidyanathan, S., Azar, A.T., Ouannas, A., 2017b. Hyperchaos and adaptive control of a novel
                hyperchaotic system with two quadratic nonlinearities. In: Azar, A.T., Vaidyanathan, S.,
                Ouannas, A. (Eds.), Fractional Order Control and Synchronization of Chaotic Systems.
                Springer International Publishing, Cham, pp. 773 803.
             Vaidyanathan, S., Zhu, Q., Azar, A.T., 2017c. Adaptive control of a novel nonlinear double con-
                vection chaotic system. In: Azar, A.T., Vaidyanathan, S., Ouannas, A. (Eds.), Fractional
                Order Control and Synchronization of Chaotic Systems. Springer International Publishing,
                Cham, pp. 357 385.
             Wang, F., Liu, C., 2007. Synchronization of unified chaotic system based on passive control.
                Physica D: Nonlinear Phenomena 225 (1), 55 60.
             Wang, X.-Y., Sun, P., 2011. Multi-switching synchronization of chaotic system with adaptive
                controllers and unknown parameters. Nonlinear Dynam. 63 (4), 599 609.
             Wang, Z., Volos, C., Kingni, S.T., Azar, A.T., Pham, V.-T., 2017. Four-wing attractors in a
                novel chaotic system with hyperbolic sine nonlinearity. Optik   Int. J. Light Electr. Opt.
                131, 1071 1078.
             Wen, X.-J., Wu, Z.-M., Lu, J.-G., 2008. Stability analysis of a class of nonlinear fractional-order
                systems. IEEE Trans. Circuits Systems II: Express Briefs 55 (11), 1178 1182.
             Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A., 1985. Determining lyapunov exponents
                from a time series. Phys. D: Nonlinear Phen. 16 (3), 285 317.
             Yang, T., Chua, L.O., 1997. Impulsive stabilization for control and synchronization of chaotic
                systems : theory and application to secure communication. IEEE Trans. Circuits Syst. I:
                Fundam. Theory Applicat. 44 (10), 976 988.
             Zhang, H., Ma, X.-K., Liu, W.-Z., 2004. Synchronization of chaotic systems with parametric
                uncertainty using active sliding mode control. Chaos Solitons Fractals 21 (5), 1249 1257.
             Zhang, H., Lewis, F.L., Das, A., 2011. Optimal design for synchronization of cooperative sys-
                tems: state feedback, observer and output feedback. IEEE Trans. Automatic Control 56 (8),
                1948 1952.
             Zhu, Q., Azar, A.T., 2015. Complex system modelling and control through intelligent soft com-
                putations. Studies in Fuzziness and Soft Computing, Berlin, Germany.
   350   351   352   353   354   355   356   357   358   359   360