Page 360 - Mathematical Techniques of Fractional Order Systems
P. 360

Dual Combination Synchronization Scheme Chapter | 12  351



                                    α
                                   D Y 1 5 B 1 Y 1 1 G 1 ðY 1 Þ;       ð12:2Þ
             where A 1 AR m 3 m , B 1 AR m 3 m  are the linear part of the systems,
                               T                       T
             X 1 5 ½x 11 ; x 12 ; :::; x 1m Š and Y 1 5 ½y 11 ; y 12 ; :::; y 1m Š are the two state vector
                                                             m
                                                                      m
                                                        m
             of uncoupled master systems (12.1) and (12.2); F 1 :R -R and G 1 :R -R m
             are the two known real vector valued functions.
                Next, another two master systems are considered as
                                     α
                                   D X 2 5 A 2 X 2 1 F 2 ðX 2 Þ        ð12:3Þ
                                    α
                                   D Y 2 5 B 2 Y 2 1 G 2 ðY 2 Þ;       ð12:4Þ
             where A 2 AR m 3 m , B 2 AR m 3 m  are the linear part of the systems,
                               T
                                                       T
             X 2 5 ½x 21 ; x 22 ; :::; x 2m Š and Y 2 5 ½y 21 ; y 22 ; :::; y 2m Š are the two state vector
                                                        m
                                                                      m
                                                             m
             of uncoupled master systems (12.3) and (12.4); F 2 :R -R and G 2 :R -R m
             are the two known real vector valued functions.
                Now, the corresponding two slave systems are considered as
                                  α
                                 D X 3 5 A 3 X 3 1 F 3 ðX 3 Þ 1 U 1    ð12:5Þ
                                  α
                                 D Y 3 5 B 3 Y 3 1 G 3 ðY 3 Þ 1 U 2 ;  ð12:6Þ
                                                            T
                                     T
             where X 3 5 ½x 31 ; x 32 ; :::; x 3n Š and Y 3 5 ½y 31 ; y 32 ; :::; y 3n Š are the two state
             vector of uncoupled master systems (12.5) and (12.6); A 3 AR n 3 n , B 3 AR n 3 n
                                                            n
                                                                 n
                                                   n
                                               n
             are the linear part of the systems, F 3 :R -R and G 3 :R -R are the two
             known real vector valued functions, U 1 and U 2 are the control functions to
             be designed later.
                The error function is defined as
                                     e 5 Z 2 CðY 1 XÞ;
                             T             T             T            T
             where e 5 ½e 1 ; e 2 Š , X 5 ½X 1 ; Y 1 Š , Y 5 ½X 2 ; Y 2 Š , Z 5 ½X 3 ; Y 3 Š  and

                       0
                  C 1
             C 5          , then the error function will be
                   0  C 2
                                   e 1 5 X 3 2 C 1 ðX 2 1 X 1 Þ
                                    e 2 5 Y 3 2 C 2 ðY 2 1 Y 1 Þ
                The error systems is obtained as
               α
             D e 1 5A 3 e 1 1A 3 C 1 ðX 2 1X 1 Þ1F 3 ðX 3 Þ2C 1 ½A 2 X 2 1F 2 ðX 2 Þ1A 1 X 1 1F 1 ðX 1 ފ1U 1
               α
             D e 2 5B 3 e 2 1B 3 C 2 ðY 2 1Y 1 Þ1G 3 ðY 3 Þ2C 2 ½B 2 Y 2 1G 2 ðY 2 Þ1B 1 Y 1 1G 1 ðY 1 ފ1U 2
                                                                       ð12:7Þ


             Theorem 1: (Wang et al., 2010) Consider an autonomous fractional order
             linear system as
   355   356   357   358   359   360   361   362   363   364   365