Page 364 - Mathematical Techniques of Fractional Order Systems
P. 364

Dual Combination Synchronization Scheme Chapter | 12  355


                                                0.5
                                                0.4
                 0.1
                  0                             0.3
                –0.1                            0.2
               x 23 (t)  –0.2                  x 22 (t)  0.1
                –0.3
                                                 0
                –0.4
                 0.5                            –0.1
                                             0.4
                       0                 0.2    –0.2
                                     0
                      x 22 (t)    –0.2          –0.3
                            –0.5  –0.4  x 21 (t)
                                                 –0.3  –0.2  –0.1  0  0.1  0.2
                                                              x 21 (t)
                            (A)                               (B)
                0.1                             0.1
               0.05                             0.05
                 0                               0
               –0.05                           –0.05
              x 23 (t)  –0.1                  x 23 (t)  –0.1
               –0.15                           –0.15
               –0.2                             –0.2
               –0.25                           –0.25
               –0.3                             –0.3
               –0.35                           –0.35
                 –0.3  –0.2  –0.1  0  0.1  0.2   –0.3  –0.2  –0.1  0  0.1  0.2  0.3  0.4  0.5
                             x 21 (t)                        x 22 (t)
                             (C)                             (D)
             FIGURE 12.3 Phase portraits of Newton Leipnik system at α 5 0:95: (A) in x 21 2 x 22 2 x 23
             space, (B) in x 21 2 x 22 plane, (C) in x 21 2 x 23 plane, (D) in x 22 2 x 23 plane.

                If the parameters are taken as a 21 5 0:4; a 22 5 0:175, initial condition as
             ð0:19; 0; 2 0:18Þ, then at α 5 0:95; Eq. (12.12) becomes the fractional order
             Newton Leipnik chaotic equation. The phase portraits in x 21 2 x 22 2 x 23
             space and x 21 2 x 22 , x 21 2 x 23 , x 22 2 x 23 planes are shown through the
             Fig. 12.3A D respectively.

                                 α
                                d y 21
                                dt α  52 y 21 2 b 21 y 22 2 y 23 y 22
                                 α
                                d y 22
                                dt α  52 y 22 2 b 22 y 21 2 y 21 y 23  ð12:13Þ
                                 α
                                d y 23  5 b 23 y 23 1 y 21 y 22 1 1;
                                dt α


                The chaotic attractors of the system (12.13) are described through
             Fig. 12.4 at order of derivative α 5 0:99 for the parameters’ values
             b 21 5 19; b 22 5 11; b 23 5 0:73 and the initial condition is ð8; 2; 3Þ.The
             phase portraits in y 21 2 y 22 2 y 23 space and y 21 2 y 22 , y 21 2 y 23 , y 22 2 y 23
             planes are shown through Fig. 12.4A D respectively.
   359   360   361   362   363   364   365   366   367   368   369