Page 369 - Mathematical Techniques of Fractional Order Systems
P. 369

360  Mathematical Techniques of Fractional Order Systems


            x 13 ð0ÞÞ 5 ð0:2; 0:5; 0:3Þ, ðy 11 ð0Þ; y 12 ð0Þ; y 13 ð0ÞÞ 5 ð2 1; 2 1; 2 2Þ, ðx 21 ð0Þ;
            x 22 ð0Þ; x 23 ð0ÞÞ 5 ð0:19; 0; 2 0:18Þ, ðy 21 ð0Þ; y 22 ð0Þ; y 23 ð0ÞÞ 5 ð8; 2; 3Þ and
            slave systems Lu hyperchaotic system, 4D Integral order hyperchaotic system
            are taken as ðx 31 ð0Þ; x 32 ð0Þ; x 33 ð0Þ; x 34 ð0ÞÞ 5 ð2 10; 2 14; 12; 10Þ and
            ðy 31 ð0Þ; y 32 ð0Þ; y 33 ð0Þ; y 34 ð0ÞÞ 5 ð1:2; 0:6; 0:8; 0:5Þ, respectively. Hence
            the  initial condition of the error system will be ðe 11 ð0Þ; e 12 ð0Þ;
            e 13 ð0Þ; e 14 ð0Þ; e 21 ð0Þ; e 22 ð0Þ; e 23 ð0Þ; e 24 ð0ÞÞ 5 ð2 10:39; 2 14:50; 11:88;
            9:88; 2 5:80; 2 4; 2 2; 2 0:5Þ. Fig. 12.7A H show the chaotic systems
            are dual combination synchronized and it is also seen from Fig. 12.7I that the
            error vectors asymptotically converge to zero as time becomes large which
            implies that dual combination synchronizations among the considered frac-
            tional order systems are achieved at α 5 0:98.




                30                             40
                                      x (t)                          x (t)
                                      31                             32
                                      x (t)+x (t)                    x (t)+x (t)
                                      21  11   30                    22  21
                20
                                               20
                10
              x 31 (t), x 21 (t)+x 11 (t)  0  x 32 (t), x 22 (t)+x 12 (t)  10 0
               –10
                                              –10
               –20
                                              –20
               –30                            –30
                 0  1  2  3  4  5  6  7  8  9  10  0  1  2  3  4  5  6  7  8  9  10
                              t                              t
                             (A)                            (B)
                60                             60
                                      x (t)                          x (t)
                                       33                            34
                                      x (t)+x (t)                    x (t)+x (t)
                                       23  13                        23  13
                50                             50
                                               40
                40
              x 33 (t),  x 23 (t)+x 13 (t)  30  x 34 (t), x 23 (t)+x 13 (t)  30
                20
                                               20
                10                             10
                0                              0
                 0  1  2  3  4  5  6  7  8  9  10  0  1  2  3  4  5  6  7  8  9  10
                              t                              t
                             (C)                            (D)
            FIGURE 12.7 Dual combination synchronization among different dimensional chaotic systems
            (12.10) (12.15) : (A) between x 31 ðtÞ and x 21 ðtÞ 1 x 11 ðtÞ; (B) between x 32 ðtÞ and x 22 ðtÞ 1 x 12 ðtÞ;
            (C) between x 33 ðtÞ and x 23 ðtÞ 1 x 13 ðtÞ; (D) between x 34 ðtÞ and x 23 ðtÞ 1 x 13 ðtÞ; (E) between y 31 ðtÞ
            and y 21 ðtÞ 1 y 11 ðtÞ; (F) between y 32 ðtÞ and y 22 ðtÞ 1 y 12 ðtÞ; (G) between y 33 ðtÞ and y 23 ðtÞ 1 y 13 ðtÞ;
            (H) between y 34 ðtÞ and y 23 ðtÞ 1 y 13 ðtÞ; (I) The evaluation of the error functions
            e ji ðtÞ; j 5 1; 2; i 5 1; 2; 3; 4at α 5 0:98.
   364   365   366   367   368   369   370   371   372   373   374